\(A=a+\frac{1}{b\left(a-b\right)^2}=\frac{\left(a-b\right)}{2}+\frac{\left(a-b\right)}{2}+b+\frac{1}{b\left(a-b\right)^2}\ge4\sqrt[4]{\frac{1}{4}}=2\sqrt{2}\)
( cô si )
\(A=a+\frac{1}{b\left(a-b\right)^2}=\frac{\left(a-b\right)}{2}+\frac{\left(a-b\right)}{2}+b+\frac{1}{b\left(a-b\right)^2}\ge4\sqrt[4]{\frac{1}{4}}=2\sqrt{2}\)
( cô si )
Chứng minh \(\sqrt{a^2-a+1}+\sqrt{b^2-b+1}\ge2\sqrt[4]{\left(a^2-a+1\right)\left(b^2-b+1\right)+\frac{1}{8}\left(a-b\right)^2}\)
Với a, b >0.
Liệu có thể chứng minh?
Câu 1: cho các số dương a,b,c. CM BĐT: \(\sqrt{\frac{a}{b+c}}\)+\(\sqrt{\frac{b}{c+a}}\)+\(\sqrt{\frac{c}{a+b}}\)>2
Câu 2: CMR \(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\)\(\ge2\)với a,b dương
Hai số a,b thỏa mãn \(\left\{{}\begin{matrix}a,b>0\\\left(\sqrt{a}+1\right)\left(\sqrt{b}+1\right)\ge4\end{matrix}\right.\)
Chứng minh \(\dfrac{a^2}{b}+\dfrac{b^2}{a}\ge2\)
C/m biểu thức
a)\(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\left(\frac{\sqrt{a}+\sqrt{b}}{a-b}\right)=1\)(a,b>0,a\(\ne\)0
b)\(\frac{a-b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\frac{1}{\sqrt{a}+\sqrt{b}}=a-b\left(a,b>0,a\ne b\right)\)
c)\(\left(2+\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\left(2-\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)=4-a\left(a>0,a\ne1\right)\)
d)\(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)=\left(1-a\right)^2\left(a\ge0,a\ne1\right)\)
Giải giúp mk với. THứ 3 tuần sau là phải nộp rồi
Cho a;b;c>0
CMR:\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+a+b+c\ge2\sqrt{3\left(a^2+b^2+c^2\right)}\)
Phá ngoặc được \(T=2+\frac{1}{a}+\frac{1}{b}+a+b+\frac{a}{b}+\frac{b}{a}=2+\frac{a+b}{ab}+a+b+\frac{a}{b}+\frac{b}{a}\)
Theo bdt cosi ta có \(\frac{a}{b}+\frac{b}{a}\ge2\Rightarrow T\ge4+\frac{a+b}{ab}+a+b\)
Ta có \(\frac{a+b}{ab}+a+b=\frac{a+b}{2ab}+\left(a+b\right)+\frac{a+b}{2ab}\) Theo bdt cosi
\(\frac{a+b}{2ab}+\left(a+b\right)\ge2\sqrt{\frac{\left(a+b\right)^2}{2ab}}\ge2\sqrt{\frac{4ab}{2ab}}=2\sqrt{2}\)
Lại có \(1=a^2+b^2\ge2ab\Rightarrow\frac{1}{ab}\ge2\Rightarrow\frac{1}{\sqrt{ab}}\ge\sqrt{2}\)
\(\frac{a+b}{2ab}\ge\frac{2\sqrt{ab}}{2ab}=\frac{1}{\sqrt{ab}}\ge\sqrt{2}\) \(\Rightarrow T\ge4+2\sqrt{2}+\sqrt{2}=4+3\sqrt{2}\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{\sqrt{2}}\)
1.Chứng minh \(\sqrt{x^2+xy+y^2}+\sqrt{x^2+xz+z^2}\ge\sqrt{y^2+yz+z^2}\)
2. Cho a,b,c>0. Chứng minh \(\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\frac{1}{\sqrt[3]{a}}+\frac{1}{\sqrt[3]{b}}+\frac{1}{\sqrt[3]{c}}\right)-\frac{a+b+c}{\sqrt[3]{abc}}\le6\)
3. Cho a,b>0 , n là số nguyên dương. Chứng minh \(\frac{1}{\sqrt[n]{a}}+\frac{1}{\sqrt[n]{b}}\ge2\sqrt[n]{\frac{2}{a+b}}\)
4. Cho a,b,c >0. Chứng minh \(\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ba}\le\frac{a+b+c}{2abc}\)
cho 3 số a,b,c đôi 1 khác nhau cm
\(\frac{\left(a+b\right)^2}{\left(a-b\right)}+\frac{\left(b+c\right)^2}{\left(b-c\right)}\)+\(\frac{\left(c+a\right)^2}{\left(c-a\right)}\ge2\)
Cho a,b là các số thực dương thỏa mãn :
C/m: \(\frac{1}{a}+\frac{1}{b}-\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2\ge2\sqrt{2}\)