\(\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=1\)
Chứng minh x + y = 0
Cho x, y, z > 0
Chứng minh :
\(\sqrt{x\left(y+1\right)}+\sqrt{y\left(z+1\right)}+\sqrt{z\left(x+1\right)}\le\frac{3}{2}\sqrt{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)
chứng minh $\sqrt{x(y+1)}+\sqrt{y(z+1)}+\sqrt{z(x+1)}\leq \frac{3}{2}\sqrt{(x+1)(y+1)(z+1)}$ - Bất đẳng thức và cực trị - Diễn đàn Toán học
1. Chứng minh : \(\left(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}\right):\left(\sqrt{y}-\sqrt{x}\right)^2=1\)
Với x > 0; y > 0; x # y
Cho x,y là 2 số thực thỏa mãn\(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=0\), chứng minh rằng \(x\sqrt{1+y^2}+y\sqrt{1+x^2}=0\)
Cho x; y; z là các số dương nhỏ hơn 1 thỏa mãn x + y + z + 2\(\sqrt{xyz}\)= 1. Chứng minh rằng \(\sqrt{x\left(1-y\right)\left(1-z\right)}+\sqrt{y\left(1-x\right)\left(1-z\right)}+\sqrt{z\left(1-x\right)\left(1-y\right)}=1+\sqrt{xyz}\)
\(\sqrt{x\left(1-y\right)\left(1-z\right)}=\sqrt{x\left(yz-y-z+1\right)}=\sqrt{x\left(yz-y-z+x+y+z+2\sqrt{xyz}\right)}\)
\(=\sqrt{x\left(yz+x+2\sqrt{xyz}\right)}=\sqrt{x^2+2x\sqrt{xyz}+xyz}=\sqrt{\left(x+\sqrt{xyz}\right)^2}\)
\(=x+\sqrt{xyz}\)
Tương tự: \(\sqrt{y\left(1-x\right)\left(1-z\right)}=y+\sqrt{xyz}\) ; \(\sqrt{z\left(1-x\right)\left(1-y\right)}=z+\sqrt{xyz}\)
\(\Rightarrow VT=x+y+z+3\sqrt{xyz}=1-2\sqrt{xyz}+3\sqrt{xyz}=1+\sqrt{xyz}\) (đpcm)
Cho x,y biết \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\)
Chứng minh \(\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=1\)
Cho x , y , z > 0 thỏa mãn \(\left\{{}\begin{matrix}x^2+y^2+z^2=2\\x+y+z=2\end{matrix}\right.\)
Chứng minh \(P=x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\dfrac{\left(1+z^2\right)\left(1+x^2\right)}{x+y^2}+z\sqrt{\dfrac{\left(1+y^2\right)\left(1+x^2\right)}{1+z^2}}}\) không phụ thuộc vào biến .
Cho \(\hept{\begin{cases}x,y,z>0\\xy+yz+zx=1\end{cases}}\). Chứng minh rằng:
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge3+\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x^2}}+\sqrt{\frac{\left(y+z\right)\left(y+x\right)}{y^2}}+\sqrt{\frac{\left(z+x\right)\left(z+y\right)}{z^2}}\)
1111111111111111111
\(VT=\Sigma\frac{xy+yz+zx}{xy}=3+\Sigma\frac{z\left(x+y\right)}{xy}\)
Đến đây để ý \(\frac{1}{2}\left[\frac{z\left(x+y\right)}{xy}+\frac{y\left(z+x\right)}{zx}\right]\ge\sqrt{\frac{\left(z+x\right)\left(x+y\right)}{x^2}}\left(\text{AM - GM}\right)\)
Là xong.
Cho các số x,y thỏa mãn điều kiện \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\). Chứng minh rằng:\(\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=1\)
áp dụng cauchy ngược dấu là xong nhé bạn :>> mình ko đánh đc sorry bạn
Chứng minh đẳng thức:
a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\sqrt{xy}\left(x\ge0,y\ge0,x^2+y^2\ne0\right)\)
b) \(\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}\left(a\ge0,a\ne1\right)\)
c) \(\sqrt{x+2\sqrt{x-2}-1}\left(\sqrt{x-2}-1\right):\left(\sqrt{x}-\sqrt{3}\right)=\sqrt{x}+\sqrt{3}\left(x\ge2,x\ne3\right)\)
a: \(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y=\sqrt{xy}\)
b: \(=\dfrac{1+\sqrt{a}}{a-\sqrt{a}}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)