Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lương trần
Xem chi tiết
Thảo Vi
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 4 2021 lúc 23:55

1.

\(2cos\left(a+b\right)=cosa.cos\left(\pi+b\right)\)

\(\Leftrightarrow2cosa.cosb-2sina.sinb=-cosa.cosb\)

\(\Leftrightarrow2sina.sinb=3cosa.cosb\Rightarrow4sin^2a.sin^2b=9cos^2a.cos^2b\)

\(\Rightarrow4\left(1-cos^2a\right)\left(1-cos^2b\right)=9cos^2a.cos^2b\)

\(\Leftrightarrow4-4\left(cos^2a+cos^2b\right)=5cos^2a.cos^2b\)

\(A=\dfrac{1}{cos^2a+2\left(sin^2a+cos^2a\right)}+\dfrac{1}{cos^2b+2\left(sin^2b+cos^2b\right)}\)

\(=\dfrac{1}{2+cos^2a}+\dfrac{1}{2+cos^2b}=\dfrac{4+cos^2a+cos^2b}{4+2\left(cos^2a+cos^2b\right)+cos^2a.cos^2b}\)

\(=\dfrac{4+cos^2a+cos^2b}{4+2\left(cos^2a+cos^2b\right)+\dfrac{4}{5}-\dfrac{4}{5}\left(cos^2a+cos^2b\right)}=\dfrac{4+cos^2a+cos^2b}{\dfrac{24}{5}+\dfrac{6}{5}\left(cos^2a+cos^2b\right)}=\dfrac{5}{6}\)

Nguyễn Việt Lâm
13 tháng 4 2021 lúc 23:55

2.

\(A=2cos\dfrac{2x}{3}\left(cos\dfrac{2\pi}{3}+cos\dfrac{4x}{3}\right)=2cos\dfrac{2x}{3}\left(cos\dfrac{4x}{3}-\dfrac{1}{2}\right)\)

\(=2cos\dfrac{2x}{3}.cos\dfrac{4x}{3}-cos\dfrac{2x}{3}\)

\(=cos3x+cos\dfrac{2x}{3}-cos\dfrac{2x}{3}\)

\(=cos3x\)

\(B=\dfrac{cos2b-cos2a}{cos^2a.sin^2b}-tan^2a.cot^2b=\dfrac{1-2sin^2b-\left(1-2sin^2a\right)}{cos^2a.sin^2b}-tan^2a.cot^2b\)

\(=\dfrac{2sin^2a-2sin^2b}{cos^2a.sin^2b}-tan^2a.cot^2b=2tan^2a\left(1+cot^2b\right)-2\left(1+tan^2a\right)-tan^2a.cot^2b\)

\(=2tan^2a+2tan^2a.cot^2b-2-2tan^2a-tan^2a.cot^2b\)

\(=tan^2a.cot^2b-2\)

Nguyễn Việt Lâm
13 tháng 4 2021 lúc 23:59

3.

\(\dfrac{2sina}{cosa}=\dfrac{sin\left(a+b\right)}{cos\left(a+b\right)}\Leftrightarrow2sina.cos\left(a+b\right)=cosa.sin\left(a+b\right)\)

\(\Leftrightarrow sina.cos\left(a+b\right)=sin\left(a+b\right).cosa-cos\left(a+b\right)sina\)

\(\Leftrightarrow sina.cos\left(a+b\right)=sin\left(a+b-a\right)\)

\(\Leftrightarrow sina.cos\left(a+b\right)=sinb\)

b.

\(\dfrac{2sina}{cosa}=\dfrac{sin\left(a+b\right)}{cos\left(a+b\right)}\Leftrightarrow2sina.cos\left(a+b\right)=cosa.sin\left(a+b\right)\)

\(\Leftrightarrow sin\left(2a+b\right)+sin\left(-b\right)=\dfrac{1}{2}sin\left(2a+b\right)+\dfrac{1}{2}sinb\)

\(\Leftrightarrow\dfrac{1}{2}sin\left(2a+b\right)=\dfrac{3}{2}sinb\)

\(\Leftrightarrow sin\left(2a+b\right)=3sinb\)

Ryoji
Xem chi tiết
lu nguyễn
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 4 2019 lúc 18:09

\(A=cosa\left(sinb.cosc-cosb.sinc\right)+cosb\left(sinc.cosa-cosc.sina\right)+cosc\left(sinacosb-cosasinb\right)\)

\(A=cosasinbcosc-cosacosbsinc+cosacosbsinc-sinacosbcosc+sinacosbcosc-cosasinbcosc\)

\(A=0\)

\(B=sin^2x+\frac{1}{2}\left(cos\frac{2\pi}{3}+cos2x\right)\)

\(B=\frac{1}{2}-\frac{1}{2}cos2x-\frac{1}{4}+\frac{1}{2}cos2x\)

\(B=\frac{1}{4}\)

\(C=\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos\left(\frac{4\pi}{3}+2x\right)+\frac{1}{2}-\frac{1}{2}cos\left(\frac{4\pi}{3}-2x\right)\)

\(C=\frac{3}{2}-\frac{1}{2}cos2x-\frac{1}{2}\left(cos\left(\frac{4\pi}{3}+2x\right)+cos\left(\frac{4\pi}{3}-2x\right)\right)\)

\(C=\frac{3}{2}-\frac{1}{2}cos2x-cos\frac{4\pi}{3}.cos2x\)

\(C=\frac{3}{2}-\frac{1}{2}cos2x+\frac{1}{2}cos2x\)

\(C=\frac{3}{2}\)

\(D=\frac{1}{2}\left[\sqrt{2}sin\left(\frac{\pi}{4}+x\right)\right]^2-sin^2x-sinx.\sqrt{2}cos\left(\frac{\pi}{4}+x\right)\)

\(D=\frac{1}{2}\left(sinx+cosx\right)^2-sin^2x-sinx\left(sinx-cosx\right)\)

\(D=\frac{1}{2}\left(1+2sinx.cosx\right)-sin^2x-sin^2x+sinx.cosx\)

\(D=\frac{1}{2}+sinxcosx+sinxcosx=\frac{1}{2}+sin2x\)

Ngoc Anh Nguyen
30 tháng 4 2019 lúc 11:15

Góc độ cao của thang dựa vào tường là 60º và chân thang cách tường 4,6 m. Chiều dài của thang là

Sách Giáo Khoa
Xem chi tiết
Hai Binh
26 tháng 4 2017 lúc 19:39

Giải bài 3 trang 154 SGK Đại Số 10 | Giải toán lớp 10

Thêu Lương Thị
23 tháng 3 2018 lúc 17:32

rút gọn biểu thức:

E=cos(\(\dfrac{3\pi}{3}-\alpha\))-sin(\(\dfrac{3\pi}{2}-\alpha\))+sin(\(\alpha+4\pi\))

Quỳnh Giang
Xem chi tiết
Nguyễn Thị Anh
15 tháng 6 2016 lúc 15:18

A=cosa.cos\(\frac{\pi}{3}\)+sina.sin\(\frac{\pi}{3}\)-sina.cos\(\frac{\pi}{6}\)+cosa.sin\(\frac{\pi}{6}\)

A=\(\frac{1}{2}\)cosa+\(\frac{\sqrt{3}}{2}\)sina-\(\frac{\sqrt{3}}{2}\)sina+\(\frac{1}{2}\)cosa

A= cosa

Lê Hồng Anh
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 8 2020 lúc 13:24

\(A=sin\left(a-\frac{\pi}{4}-\frac{\pi}{3}+a\right)=sin\left(2a-\frac{7\pi}{12}\right)\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 22:48

a) Vì \(\frac{\pi }{2} < a < \pi \) nên \(\cos a < 0\)

Ta có: \({\sin ^2}a + {\cos ^2}a  = 1\)

 \(\Leftrightarrow \frac{1}{9} + {\cos ^2}a  = 1\)

\(\Leftrightarrow {\cos ^2}a =  1 - \frac{1}{9}= \frac{8}{9}\)

\(\Leftrightarrow \cos a  =\pm\sqrt { \frac{8}{9}}  =  \pm \frac{{2\sqrt 2 }}{3}\)

Vì \(\cos a < 0\) nên \(cos a =-\frac{{2\sqrt 2 }}{3}\)

Suy ra \(\tan a = \frac{{\sin a}}{{\cos a}} = \frac{{\frac{1}{3}}}{{ - \frac{{2\sqrt 2 }}{3}}} =  - \frac{{\sqrt 2 }}{4}\)

Ta có: \(\sin 2a = 2\sin a\cos a = 2.\frac{1}{3}.\left( { - \frac{{2\sqrt 2 }}{3}} \right) =  - \frac{{4\sqrt 2 }}{9}\)

\(\cos 2a = 1 - 2{\sin ^2}a = 1 - \frac{2}{9} = \frac{7}{9}\)

\(\tan 2a = \frac{{2\tan a}}{{1 - {{\tan }^2}a}} = \frac{{2.\left( { - \frac{{\sqrt 2 }}{4}} \right)}}{{1 - {{\left( { - \frac{{\sqrt 2 }}{4}} \right)}^2}}} =  - \frac{{4\sqrt 2 }}{7}\)

b) Vì \(\frac{\pi }{2} < a < \frac{{3\pi }}{4}\) nên \(\sin a > 0,\cos a < 0\)

\({\left( {\sin a + \cos a} \right)^2} = {\sin ^2}a + {\cos ^2}a + 2\sin a\cos a = 1 + 2\sin a\cos a = \frac{1}{4}\)

Suy ra \(\sin 2a = 2\sin a\cos a = \frac{1}{4} - 1 =  - \frac{3}{4}\)

Ta có: \({\sin ^2}a + {\cos ^2}a = 1\;\)

\( \Leftrightarrow \left( {\frac{1}{2} - {\cos }a} \right)^2 + {\cos ^2}a - 1 = 0\)

\( \Leftrightarrow \frac{1}{4} - \cos a + {\cos ^2}a + {\cos ^2}a - 1 = 0\)

\( \Leftrightarrow 2{\cos ^2}a - \cos a - \frac{3}{4} = 0\)

\( \Rightarrow \cos a = \frac{{1 - \sqrt 7 }}{4}\) (Vì \(\cos a < 0)\)

\(\cos 2a = 2{\cos ^2}a - 1 = 2.{\left( {\frac{{1 - \sqrt 7 }}{4}} \right)^2} - 1 =  - \frac{{\sqrt 7 }}{4}\)

\(\tan 2a = \frac{{\sin 2a}}{{\cos 2a}} = \frac{{ - \frac{3}{4}}}{{ - \frac{{\sqrt 7 }}{4}}} = \frac{{3\sqrt 7 }}{7}\)

Bình Trần Thị
Xem chi tiết
Như Hồng Đặng
9 tháng 5 2016 lúc 12:26

a) P = cos(\(\frac{\Pi}{2}\) + x) + cos(2π - x) + cos(3π + x)   = -sinx + cosx - cosx = -sinx