Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
TS Minh Quan
Xem chi tiết
Đinh Đức Hùng
29 tháng 11 2017 lúc 21:55

\(A=8x^2-4x+\frac{1}{4x^2}+2015\)

\(=\left(4x^2+\frac{1}{4x^2}\right)+\left(4x^2-4x+1\right)+2014\)

\(=\left(4x^2+\frac{1}{4x^2}\right)+\left(2x-1\right)^2+2014\)

Áp dụng bđt AM - GM ta có : \(4x^2+\frac{1}{4x^2}\ge2\sqrt{4x^2.\frac{1}{4x^2}}=2\)

\(\left(2x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(4x^2+\frac{1}{4x^2}\right)+\left(4x^2-4x+1\right)\ge2\)

\(\Rightarrow A=\left(4x^2+\frac{1}{4x^2}\right)+\left(4x^2-4x+1\right)+2014\ge2016\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}4x^2=\frac{1}{4x^2}\\\left(2x-1\right)^2=0\end{cases}}\) \(\Rightarrow x=\frac{1}{2}\)

Vậy \(A_{min}=2016\) tại \(x=\frac{1}{2}\)

nguyen thi thao
Xem chi tiết
An Nguyễn Bá
1 tháng 11 2017 lúc 17:09

\(A=4x^2-8x+1\)

\(\Leftrightarrow A=4x^2-8x+4-3\)

\(\Leftrightarrow A=\left(2x-2\right)^2-3\)

Vậy GTNN của \(A=-3\) khi \(2x-2=0\Leftrightarrow x=1\)

Trần Bảo Hân
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 5 2020 lúc 22:34

\(A=\frac{4x^2+8x+4-\left(4x^2+1\right)}{4x^2+1}=\frac{\left(2x+2\right)^2}{4x^2+1}-1\ge-1\)

\(A_{min}=-1\) khi \(x=-1\)

\(A=\frac{16x^2+4-\left(16x^2-8x+1\right)}{4x^2+1}=4-\frac{\left(4x-1\right)^2}{4x^2+1}\le4\)

\(A_{max}=4\) khi \(x=\frac{1}{4}\)

Lê Nữ Ái Phương
Xem chi tiết
Minh Hiếu
9 tháng 8 2021 lúc 15:16

A= 4(x-2)^2 - 9 >= -9

Min A=-9 khi x=2

B= 9(x+1/3)^2 +3 >=3

Min B=3 khi x= -1/3

thiên thần
Xem chi tiết
๖ۣۜNɦσƙ ๖ۣۜTì
1 tháng 7 2019 lúc 14:44

Tìm GTLN:

\(A=-x^2+6x-15\)

\(=-\left(x^2-6x+15\right)\)

\(=-\left(x^2-2.x.3+9+6\right)\)

\(=-\left(x+3\right)^2-6\le0\forall x\)

Dấu = xảy ra khi: 

   \(x-3=0\Leftrightarrow x=3\)

Vậy Amax = - 6 tại x = 3

Tìm GTNN :

\(A=x^2-4x+7\)

\(=x^2+2.x.2+4+3\)

\(=\left(x+2\right)^2+3\ge0\forall x\)

Dấu = xảy ra khi:

   \(x+2=0\Leftrightarrow x=-2\)

Vậy Amin = 3 tại x = - 2

Các câu còn lại làm tương tự nhé... :)

thiên thần
2 tháng 7 2019 lúc 15:35

giải hết i

Quốc Lê Minh
Xem chi tiết
Trần Minh Hoàng
2 tháng 10 2018 lúc 16:13

Ta có:

\(P=\sqrt{4x^2-12x+9}+\sqrt{4x^2-8x+4}\)

\(=\sqrt{\left(2x\right)^2-2.2x.3+3^2}+\sqrt{\left(2x\right)^2-2.2x.2+2^2}\)

\(=\sqrt{\left(2x-3\right)^2}+\sqrt{\left(2x-2\right)^2}\)

\(=\left|2x-3\right|+\left|2x-2\right|\)

\(=\left|2x-3\right|+\left|2-2x\right|\)

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(P\ge\left|\left(2x-3\right)+\left(2-2x\right)\right|=\left|-1\right|=1\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-3\ge0\\2-2x\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{3}{2}\\x\le1\end{cases}}\)

Vậy MinP = 1 \(\Leftrightarrow\hept{\begin{cases}x\ge\frac{3}{2}\\x\le1\end{cases}}\)

Nguyễn Thị Bích Ngọc
12 tháng 6 2019 lúc 13:58

\(P=\sqrt{4x^2-12x+9}+\sqrt{4x^2-8x+4}\)

\(=\sqrt{\left(2x-3\right)^2}+\sqrt{\left(2x-2\right)^2}\)

\(=|2x-3|+|2-2x|\)

=>\(P\ge|\left(2x-3\right)+\left(2-2x\right)|=|-1|=1\)

l҉o҉n҉g҉ d҉z҉
13 tháng 9 2020 lúc 15:41

\(P=\sqrt{4x^2-12x+9}+\sqrt{4x^2-8x+4}\)

\(=\sqrt{\left(2x-3\right)^2}+\sqrt{\left(2x-2\right)^2}\)

\(=\left|2x-3\right|+\left|2x-2\right|\)

\(=\left|3-2x\right|+\left|2x-2\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :

\(P=\left|3-2x\right|+\left|2x-2\right|\ge\left|3-2x+2x-2\right|=\left|1\right|=1\)

Đẳng thức xảy ra khi \(ab\ge0\)

=> \(\left(3-2x\right)\left(2x-2\right)\ge0\)

Xét hai trường hợp :

1. \(\hept{\begin{cases}3-2x\ge0\\2x-2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}-2x\ge-3\\2x\ge2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{3}{2}\\x\ge1\end{cases}}\Leftrightarrow1\le x\le\frac{3}{2}\)

2. \(\hept{\begin{cases}3-2x\le0\\2x-2\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}-2x\le-3\\2x\le2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{3}{2}\\x\le1\end{cases}}\)( loại )

=> MinP = 1 <=> \(1\le x\le\frac{3}{2}\)

Khách vãng lai đã xóa
Nguyễn Bá Thông
Xem chi tiết
Lê Tài Bảo Châu
18 tháng 9 2020 lúc 0:42

a) \(A=x^2-2x+5\)

\(=\left(x^2-2x+1\right)+4\)

\(=\left(x-1\right)^2+4\)

Vì \(\left(x-1\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x-1\right)^2+4\ge0;\forall x\)

b) a sẽ làm tắt 1 vài bước nhé khi nào kiểm tra thì em làm theo mẫu a là được 

\(B=4x^2+4x+11\)

\(=4\left(x^2+x+\frac{11}{4}\right)\)

\(=4\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{11}{4}\right)\)

\(=4\left[\left(x+\frac{1}{2}\right)^2+\frac{10}{4}\right]\)

\(=4\left(x+\frac{1}{2}\right)^2+10\ge10;\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(B_{min}=10\Leftrightarrow x=\frac{-1}{2}\)

c) Tìm GTLN nhé 

 \(C=5-8x-x^2\)

\(=-x^2-2.x.4-16+16+5\)

\(=-\left(x+4\right)^2+21\)

Vì \(-\left(x+4\right)^2\le0;\forall x\)

\(\Rightarrow-\left(x+4\right)^2+21\le21;\forall x\)

Dấu "="xảy ra\(\Leftrightarrow\left(x+4\right)^2=0\)

                     \(\Leftrightarrow x=-4\)

Vậy\(C_{max}=21\Leftrightarrow x=-4\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
18 tháng 9 2020 lúc 6:23

A = x2 - 2x + 5

= ( x2 - 2x + 1 ) + 4

= ( x - 1 )2 + 4 ≥ 4 > 0 ∀ x ( đpcm )

B = 4x2 + 4x + 11

= ( 4x2 + 4x + 1 ) + 10

= ( 2x + 1 )2 + 10 ≥ 10 ∀ x

Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2

=> MinB = 10 <=> x = -1/2

C = 5 - 8x - x2

= -( x2 + 8x + 16 ) + 21

= -( x + 4 )2 + 21 ≤ 21 ∀ x

Đẳng thức xảy ra <=> x + 4 = 0 => x = -4

=> MaxC = 21 <=> x = -4

Khách vãng lai đã xóa
FL.Han_
18 tháng 9 2020 lúc 15:07

\(A=x^2-2x+5\)

\(=\left(x^2-2x+1\right)+4\)

\(=\left(x-1\right)^2+4\ge4>0\forall x\)

\(\Rightarrowđpcm\)

\(B=4x^2+4x+11\)

\(=\left[\left(2x\right)^2+2.2x+1\right]+10\)

\(=\left(2x+1\right)^2+10\ge10\forall x\)

Dấu"="xảy ra khi \(\left(2x+1\right)^2=0\Rightarrow x=\frac{-1}{2}\)

\(Min_B=10\Leftrightarrow x=\frac{-1}{2}\)

Khách vãng lai đã xóa
Phan Ngọc Thùy Linh
Xem chi tiết
Pum Nhố ll xD Saint x
18 tháng 12 2016 lúc 16:54

\(A=x^2-4x^2+2-1=\left(x-2\right)^2-1\)

suy ra Amin=-1

Pum Nhố ll xD Saint x
18 tháng 12 2016 lúc 16:57

\(B=4x^2+4x+11=4\left(x^2+x+\frac{11}{4}\right)=4\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{10}{4}\right)=4\left(x+\frac{1}{2}\right)^2+10\) Suy ra Bmin = 10

phạm hương trà
28 tháng 2 2017 lúc 18:15

phần B có bạn làm rồi nha mình không làm nữa

A=x2-4x+1=x2-4x+4-3=(x-2)2-3

Vì (x-2)2\(\ge\)0\(\forall\)x \(\Rightarrow\)(x-2)2-3\(\ge\)-3\(\forall\)x

Vậy minA = -3

C=(x-1)(x+3)(x+2)(x+6)

C=(x-1)(x+6)(x+3)(x+2)

C=(x2+5x-6)(x2+5x+6)

Đặt x2+5x+6=t . Ta có:

C= (t-12).t=t2-12t=t2-12+36-36=(t-6)2-36

C= (x2+5x+6-6)2-36=(x2+5x)2-36

Vì (x2+5x)2\(\ge\)0\(\forall\)x \(\Rightarrow\)(x2+5x)2-36\(\ge\)-36\(\forall\)x

Vậy minC= -36

D=5-8x-x2=-(x2+8x-5)=-(x2+8x+16-21)=-\(\left[\left(x+4\right)^2-21\right]\)

D=-(x+4)2+21=21-(x+4)2

Vì (x+4)2\(\ge\)0\(\forall\)x\(\Rightarrow\)21-(x+4)2\(\le\)21\(\forall\)x

Vậy maxD=21

E=4x-x2+1=-(x2-4x-1)=-(x2-4x+4-5)=-\(\left[\left(x-2\right)^2-5\right]\)=-(x-2)2+5=5-(x-2)2

Vì (x-2)2\(\ge0\forall x\)\(\Rightarrow\)5-(x-2)2\(\le5\forall x\)

Vậy maxE=5

lê song trí
Xem chi tiết
Phước Nguyễn
28 tháng 3 2016 lúc 8:48

Tách các hạng tử ở tử sao cho có cùng một nhóm giống mẫu. Khi đó, thì bài dễ rồi!