Rút gọn
a.\(\sqrt{\frac{3a}{4}}.\sqrt{\frac{4a}{27}}\) với a >= 0
b.\(\sqrt{15x}\). \(\sqrt{\frac{60}{x}}\) với x >0
\(A=\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{2\sqrt{x}}{\sqrt{x}-2}-\frac{3x+4}{x-4}\) với \(x\ge 0\);x#4
a,Rút gọn A
b,Tìm giá trị của x để A=\(\frac{1}{2}\)
a: \(A=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)+2\sqrt{x}\left(\sqrt{x}+2\right)-3x-4}{x-4}\)
\(=\dfrac{x-2\sqrt{x}+2x+4\sqrt{x}-3x-4}{x-4}\)
\(=\dfrac{2\sqrt{x}-4}{x-4}=\dfrac{2}{\sqrt{x}+2}\)
b: A=1/2
=>\(\sqrt{x}+2=4\)
=>\(\sqrt{x}=2\)
=>x=4(loại)
Rút gọn các biểu thức sau
a) \(\sqrt{25a^2}+3a\) với a ≥ 0
b) \(\sqrt{9a^4}+3a^2\)
c) \(5\sqrt{4a^6}-3a^3\) với a < 0
a) \(=5\left|a\right|+3a=5a+3a=8a\)
b) \(=3\left|a^2\right|+3a^2=3a^2+3a^2=6a^2\)
c) \(=5.2\left|a^3\right|-3a^3=-10a^3-3a^3=-13a^3\)
rút gọn
a, \(\dfrac{x}{y}\sqrt{\dfrac{x^2}{y^4}}\) với x>0, y khác 0
b, \(2y^2\sqrt{\dfrac{x^4}{4y^2}}\) với y<0
\(a,=\dfrac{x}{y}\cdot\dfrac{\left|x\right|}{y^2}=\dfrac{x^2}{y^3}\\ b,=2y^2\cdot\dfrac{x^2}{\left|2y\right|}=\dfrac{2x^2y^2}{-2y}=-x^2y\)
Cho biểu thức: \(P=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\) Với x>0;x#1;x#4
a,Rút gọn P
b,Với giá trị nào của x thì P=\(\frac{1}{4}\)
c,Tính giá trị của P tại x=\(4+2\sqrt{3}\)
a: \(P=\dfrac{\sqrt{x}-\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{x-1-x+4}\)
\(=\dfrac{1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}-2}{3}=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)
b: P=1/4
=>\(\dfrac{\sqrt{x}-2}{3\sqrt{x}}=\dfrac{1}{4}\)
=>\(4\left(\sqrt{x}-2\right)=3\sqrt{x}\)
=>\(4\sqrt{x}-8-3\sqrt{x}=0\)
=>\(\sqrt{x}=8\)
=>x=64
c: Khi \(x=4+2\sqrt{3}\) thì \(P=\dfrac{\sqrt{4+2\sqrt{3}}-2}{3\cdot\sqrt{4+2\sqrt{3}}}\)
\(=\dfrac{\sqrt{3}+1-2}{3\left(\sqrt{3}+1\right)}=\dfrac{\sqrt{3}-1}{3\sqrt{3}+3}=\dfrac{2-\sqrt{3}}{3}\)
Rút gọn các biểu thức sau:
a) $\sqrt{9a^4}$
b) 2$\sqrt{a^{2}}$- 5a (với a<0)
c) $\sqrt{16(1+4x+4x^2)}$ với x $\geq$ $\frac{1}{2}$
d) $\frac{1}{a-3}$$\sqrt{9(a^2-3a+9)}$ với a<3
a) \(\sqrt{9a^4}=\sqrt{\left(3a^2\right)^2}=\left|3a^2\right|=3a^2\)
b) \(2\sqrt{a^2}-5a=2\left|a\right|-5a=-2a-5a=-7a\)
c) \(\sqrt{16\left(1+4x+4x^2\right)}=\sqrt{\left[4\left(1+2x\right)\right]^2}=\left|4\left(1+2x\right)\right|=4\left(1+2x\right)\)
Rút gọn
\(B=\frac{2}{x^2-y^2}\sqrt{\frac{9\left(x^2+2xy+y^2\right)}{4}}\) với x > -y
\(C=\sqrt{\frac{2a}{3}}.\sqrt{\frac{3a}{8}}\) với a >hoặc= 0
\(\frac{1}{a-b}\sqrt{a^4\left(a-b\right)^2}\) với a > 0
\(B=\frac{2}{x^2-y^2}\cdot\sqrt{\frac{9\left(x^2+2xy+y^2\right)}{4}}=\frac{2}{\left(x-y\right)\left(x+y\right)}\cdot\sqrt{\frac{9\left(x+y\right)^2}{4}}\)
\(=\frac{2}{\left(x-y\right)\left(x+y\right)}\cdot\frac{\sqrt{9\left(x+y\right)^2}}{\sqrt{4}}=\frac{2}{\left(x-y\right)\left(x+y\right)}\cdot\frac{3\left(x+y\right)}{2}\)(vì x > -y <=> x + y > 0)
\(=\frac{3}{x-y}\)
\(C=\sqrt{\frac{2a}{3}}.\sqrt{\frac{3a}{8}}=\sqrt{\frac{2a}{3}\cdot\frac{3a}{8}}=\sqrt{\frac{6a^2}{24}}=\sqrt{\frac{a^2}{4}}=\frac{a}{2}\)(vì a > = 0)
\(D=\frac{1}{a-b}\cdot\sqrt{a^4\left(a-b\right)^2}=\frac{1}{a-b}\cdot a^2\left(a-b\right)=a^2\)(a > b > 0)
câu cuối điều kiện là a>b
\(\frac{1}{a-b}\sqrt{a^4\left(a-b\right)^2}=\frac{a^2\left|a-b\right|}{a-b}=\frac{a^2\left(a-b\right)}{a-b}=a^2\) (vì a>b)
Bài 1 rút gọn
a)\(3\sqrt{5a}-\sqrt{20a}+\sqrt{45a}\)với a
≥0
b)\(\sqrt{160a^2}+\dfrac{1}{2}\sqrt{40a^2}-3\sqrt{90a^2}\)
c)\(\sqrt{x^2-2x+1}-\sqrt{x^2-4x+4}\)
giải hộ mik
a: Ta có: \(3\sqrt{5a}-\sqrt{20a}+\sqrt{45a}\)
\(=3\sqrt{5a}-2\sqrt{5a}+3\sqrt{5a}\)
\(=4\sqrt{5a}\)
b: Ta có: \(\sqrt{160a^2}+\dfrac{1}{2}\sqrt{40a^2}-3\sqrt{90a^2}\)
\(=4a\sqrt{10}+\dfrac{1}{2}\cdot2a\sqrt{10}-3\cdot3a\sqrt{10}\)
\(=-4a\sqrt{10}\)
c: Ta có: \(\sqrt{x^2-2x+1}-\sqrt{x^2-4x+4}\)
\(=\left|x-1\right|-\left|x-2\right|\)
Rút gọn biểu thức chứa căn bậc hai: ai xem hộ em bài dưới em làm có đùng không ạ
\(2\sqrt{3}-\sqrt{75a}+a\sqrt{\frac{13,5}{2a}}-\frac{2}{5}\sqrt{300a^3}=2\sqrt{3a}-5\sqrt{3a}+\frac{a}{2a}\sqrt{27a}-\frac{2}{5}.10a\sqrt{3a}=2\sqrt{3a}-5\sqrt{3a}+\frac{3}{a}\sqrt{3a}-4a\sqrt{3a}=\frac{-11}{2}\sqrt{3}\)
Bài 1 rút gọn
a, 2y+\(\sqrt{\frac{63y^3}{7y}}\) với y>0
b, \(\frac{3\sqrt{3\left(a^2-4a+4\right)}}{27}\)-6 với a<0
c, x-4+\(\sqrt{16-8x+x^2}\) với x>5
\(2y+\sqrt{\frac{63y^3}{7y}}=2y+\sqrt{9y^2}=2y+3y=5y\)
\(\frac{3\sqrt{3\left(a-2\right)^2}}{27}=\frac{\sqrt{3\left(a-2\right)^2}}{9}=\frac{\sqrt{3}\left(2-a\right)}{\left(\sqrt{3}\right)^4}=\frac{2-a}{3\sqrt{3}}\)
\(x-4+\sqrt{16-8x+x^2}=x-4+x-4=2x-8\)