Cho tam giác ABC vuông tại A .Vẽ AH vuông góc BC .Gọi E, F lần lượt là hình chiếu của H trên AB và AC
Chứng minh \(\frac{AF.AC}{EF.BC}\)=\(\frac{AE}{AC}\)
2) Cho tam giác ABC vuông tại A, đường cao AH. a) Giả sử AB = 6cm AC = 8cm hãy tính độ dài đoạn thẳng BC, AH,ACB (số đo góc làm tròn đến phút). b) Gọi điểm E và F lần lượt là hình chiếu của điểm H trên cạnh AB,AC . Chứng minh rằng AE .AB=AF.AC, từ đó suy ra AFE = ABC c) Đường trung tuyến AI của tam giác ABC cắt cạnh EF tại K. Chứng minh rằng: 3 = (KF)/(BC) cos^3 B .sin B= x- n-
a: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>AH=4,8cm
Xét ΔABC vuông tại A có \(sinACB=\dfrac{AB}{BC}=\dfrac{3}{5}\)
=>\(\widehat{ACB}\simeq36^052'\)
b: ΔHAB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
ΔHAC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)
=>\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Xét ΔAEF vuông tại A và ΔACB vuông tại A có
\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Do đó: ΔAEF đồng dạng với ΔACB
=>\(\widehat{AFE}=\widehat{ABC}\)
cho tam giác ABC vuông tại A có đường cao AH ( H∈BC)
a) Cho biết AB=6cm,BC=10cm. Tính AC,AH,BH
bb) Gọi E,F lần lượt là hình chiếu của điểm H lên các cạnh AB,AC. Chứng minh AE.AB=AF.AC và △AFE∼△ABC
c) Kẻ phân giác BD của góc ABC ( D∈ AC). Chứng minh : cotDBC=(AB+BC)/AC
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=10^2-6^2=64\)
=>AC=8(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}AH=\dfrac{6\cdot8}{10}=4,8\left(cm\right)\\BH=\dfrac{6^2}{10}=3,6\left(cm\right)\end{matrix}\right.\)
b: ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra AE*AB=AF*AC
=>AE/AC=AF/AB
Xét ΔAEF vuông tại A và ΔACB vuông tại A có
AE/AC=AF/AB
Do đó: ΔAEF đồng dạng với ΔACB
c: Xét ΔBAC có BD là phân giác
nên \(\dfrac{AD}{AB}=\dfrac{CD}{CB}\)
=>\(\dfrac{AB}{AD}=\dfrac{CB}{CD}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AB}{AD}=\dfrac{CB}{CD}=\dfrac{AB+BC}{AD+CD}=\dfrac{AB+BC}{AC}\)(1)
ΔBAD vuông tại A có
\(cotABD=\dfrac{AB}{AD}\)(2)
BD là phân giác của góc ABC
=>\(\widehat{ABD}=\widehat{DBC}\left(3\right)\)
Từ (1),(2),(3) suy ra \(cotDBC=\dfrac{AB+BC}{AC}\)
tam giác ABC vuông tại A có AB>AC đường cao AH, E và F theo thứ tự là hình chiếu vuông góc của H trên AB, AC. EF cắt AH tại O
a) chứng minh AB2=BH.BC và EF.BC= AB.AC
b) Gọi I, K lần lượt là trung điểm của HC, HB. Chứng minh\(\frac{1}{OH^2}=\frac{1}{OK^2}+\frac{1}{OI^2}\)
c) EF cắt BC tại T. Chứng minh TF.TE=TC.TB
c) ÈF
tam giác ABC vuông tại A có AB>AC đường cao AH, E và F theo thứ tự là hình chiếu vuông góc của H trên AB, AC. EF cắt AH tại O
a) chứng minh AB2=BH.BC và EF.BC= AB.AC
b) Gọi I, K lần lượt là trung điểm của HC, HB. Chứng minh
c) EF cắt BC tại T. Chứng minh TF.TE=TC.TB
cho tam giác ABC vuông tại A, đường cao AH. Gọi E,F lần lượt là hình chiếu của H trên cạnh AB,AC.
a. Trong trường hợp AB=6, AC=8, hãy tính BC, AH, Sin b
b. Chứng minh BE.BA + AF.AC = AB2
Lời giải:
a. Áp dụng định lý Pitago:
$BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10$ (cm)
$AH=2S_{ABC}:BC=AB.AC:BC=6.8:10=4,8$ (cm)
$\sin B = \frac{AC}{BC}=\frac{8}{10}=\frac{4}{5}$
b.
Áp dụng hệ thức lượng trong tam giác vuông ta có:
$BE.BA=BH^2$
$AF.AC=AH^2$
$\Rightarrow BE.BA+AF.AC=BH^2+AH^2=AB^2$ (đpcm)
2 Cho tam giác ABC vuông tại A, đường cao AH. Biết AC = 4cm BC = 5cm m) Tinh BH.AH hat B' (độ lớn của góc làm tròn kết quả đến phút) b) Gọi E và F lần lượt là hình chiếu của H trên AB, AC. Chứng minh . AE.AB = AF.AC c) Gọi M là trung điểm của BC. Chứng minh S AEMF = 1/ 2 S ABC
a: ΔABC vuông tại A
=>BC^2=AB^2+AC^2
=>AB^2=5^2-4^2=9
=>AB=3(cm)
ΔABC vuông tại A có sin B=AC/BC=4/5
nên \(\widehat{B}\simeq53^0\)
ΔABC vuông tại A có AH là đường cao
nên BH*BC=BA^2
=>BH=3^2/5=1,8cm
b: ΔAHB vuông tại H có HE là đường cao
nên AE*AB=AH^2
ΔAHC vuông tại H có HF là đường cao
nên AF*AC=AH^2
=>AE*AB=AF*AC
Cho Tam giác vuông tại A. Đường cao AH. Biết AC = 12cm, BC = 15cm. a) Tính HA, HB, HC. b) Gọi E, F là hình chiếu vuông góc của H lần lượt lên AB, AC. Chứng minh : AE.AB = AF.AC c) Chứng minh: HE²+HF² = HB.HC
a, xét \(\Delta ABC\) vuông tại A áp dụng hệ thức lượng\(=>AC^2=CH.BC=>HC=\dfrac{AC^2}{BC}=\dfrac{12^2}{15}=9,6cm\)
\(=>HB=BC-HC=15-9,6=5,4cm\)
áp dụng Pytago trong \(\Delta AHC\) vuông tại H
\(=>HA=\sqrt{AC^2-HC^2}=\sqrt{12^2-9,6^2}=7,2cm\)
\(b,\) do E,F là hình chiếu vuông góc của H lần lượt lên AB, AC
\(=>\left\{{}\begin{matrix}EH\perp AB\\HF\perp AC\end{matrix}\right.\) mà \(\Delta AHB\) và \(\Delta AHC\) lần lượt vuông góc tại H
theo hệ thức lượng
\(=>\left\{{}\begin{matrix}AH^2=AE.AB\\AH^2=AF.AC\end{matrix}\right.\)=>\(AE.AB=AF.AC\)
c, do E,F là hình chiếu vuông góc của H lần lượt lên AB, AC
=> tứ giác EHFA là hình chữ nhật\(=>AE=HF< =>HF^2=AE^2\)
áp dụng pytago trong \(\Delta EHA\) vuông tại E
\(=>HE^2+AE^2=AH^2< =>HE^2+HF^2=AH^2\)(1)
theo hệ thức lượng trong tam giác ABC vuông tại A đường cao AH
\(=>AH^2=HB.HC\left(2\right)\)
(1)(2)=>\(HE^2+HF^2=HB.HC\)
Cho tam giác ABC vuông tại A (AB<AC) có AH là đường cao. Gọi M và N lần lượt là hình chiếu của H trên AB và AC. Vẽ điểm D đối xứng với A qua N. Vẽ AE vuông góc HD tại E. Chứng minh ME vuông góc NE.
vẽ tam giác ABC vuông tại A có AB = 4cm,AC =5cm và AH là đường cao , tính AH, tìm tan B,sin C, gọi E là hình chiếu của H trên AB,F là hình chiếu của H trên BC,chứng minh:AE.AB=AF.AC