Bài 8: Rút gọn biểu thức chứa căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
kietdeptrai

2) Cho tam giác ABC vuông tại A, đường cao AH. a) Giả sử AB = 6cm AC = 8cm hãy tính độ dài đoạn thẳng BC, AH,ACB (số đo góc làm tròn đến phút). b) Gọi điểm E và F lần lượt là hình chiếu của điểm H trên cạnh AB,AC . Chứng minh rằng AE .AB=AF.AC, từ đó suy ra AFE = ABC c) Đường trung tuyến AI của tam giác ABC cắt cạnh EF tại K. Chứng minh rằng: 3 = (KF)/(BC) cos^3 B .sin B= x- n-

Nguyễn Lê Phước Thịnh
16 tháng 10 2023 lúc 13:27

a: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=4,8cm

Xét ΔABC vuông tại A có \(sinACB=\dfrac{AB}{BC}=\dfrac{3}{5}\)

=>\(\widehat{ACB}\simeq36^052'\)

b: ΔHAB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

ΔHAC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)

=>\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF vuông tại A và ΔACB vuông tại A có

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Do đó: ΔAEF đồng dạng với ΔACB

=>\(\widehat{AFE}=\widehat{ABC}\)


Các câu hỏi tương tự
kietdeptrai
Xem chi tiết
Nguyễn Hoàng Long
Xem chi tiết
Linh nguyễn
Xem chi tiết
Nguy H
Xem chi tiết
Nguyễn quốc trung
Xem chi tiết
Mông đức thành
Xem chi tiết
trinh mai
Xem chi tiết
Kim Ngân Nguyễn Thị
Xem chi tiết
Tuân Ngô
Xem chi tiết