Bài 8: Rút gọn biểu thức chứa căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
kietdeptrai

2) Cho ABC vuông tại A. Kẻ đường cao AH của AABC Ke HM perp AB HN perp AC (M in AB ,N in AC) a) Giải tam giác vuông ABC biết AB = 5cm AC = 8cm (số đo góc làm tròn đến độ, số đo độ dài làm tròn đến chữ số thập phân thứ 3) b) Chung minh M * N ^ 2 = AM.MB + AN.NC c) Chứng minh (A * B ^ 2)/(A * C ^ 2) = BH CH v hat a tan C = (BM)/(CN)

Nguyễn Lê Phước Thịnh
27 tháng 8 2023 lúc 15:40

a:

ΔABC vuông tại A

=>BC^2=AB^2+AC^2

=>\(BC^2=25+64=89\)

=>\(BC=\sqrt{89}\)

Xét ΔABC vuông tại A có \(tanB=\dfrac{AC}{AB}=\dfrac{8}{5}\)

=>\(\widehat{B}\simeq58^0\)

=>\(\widehat{C}=32^0\)

b: Xét tứ giác AMHN có

góc AMH=góc ANH=góc MAN=90 độ

=>AMHN là hình chữ nhật

ΔAHB vuông tại H có HM vuông góc AB

nên AM*AB=AH^2; BM*BA=BH^2; AM*MB=HM^2

ΔAHC vuông tại H có HN làđường cao

nên AN*AC=AH^2;CN*CA=CH^2; NA*NC=NH^2

AM*MB+NA*NC

=HM^2+HN^2

=MN^2

c: AB^2/AC^2

\(=\dfrac{BH\cdot CB}{CH\cdot CB}=\dfrac{BH}{CH}\)


Các câu hỏi tương tự
kietdeptrai
Xem chi tiết
Nguyễn Hoàng Long
Xem chi tiết
Nguyễn quốc trung
Xem chi tiết
Kim Ngân Nguyễn Thị
Xem chi tiết
trinh mai
Xem chi tiết
Linh nguyễn
Xem chi tiết
Nguyễn Hoàng Long
Xem chi tiết
Mông đức thành
Xem chi tiết
Nguyễn Ngọc Quỳnh Như
Xem chi tiết