Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Văn Huy
Xem chi tiết
Phan Thị Thanh Hằng
12 tháng 8 2020 lúc 22:23

Bài này rất dễ (đọc kĩ đề bài )

Khách vãng lai đã xóa
Vũ Văn Thành
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 1 2023 lúc 23:05

Kẻ CG//AB(G thuộc QP)

Xét ΔRBP có CG//RP

nên PC/PB=CG/RB=PG/PR

Xét ΔQAR và ΔQCG có

góc QAR=góc QCG

góc AQR=góc CQG

=>ΔQAR đồng đạng với ΔQCG

=>QA/QC=QR/QG=AR/CG

PB*PC*QC/QA=RB/CG*CG/AR=RB/RA

=>PB/PC*QC/QA*RA/RB=1

võ mạnh quân
Xem chi tiết
bui van trong
15 tháng 2 2021 lúc 20:13

Từ A kẻ đường thẳng // BC cắt BO, CO kéo dài tại E và F

Theo định lý Thales ta có: \(\frac{BP}{PC}=\frac{AE}{AF},\frac{QC}{QA}=\frac{AF}{BC},\frac{BC}{AE}=\frac{RA}{RB}\)

Nhân 3 đẳng thức vs nhau ta đc: 

\(\frac{BP}{PC}.\frac{QC}{QA}.\frac{RA}{RB}=\frac{AE}{AF}.\frac{AF}{BC}.\frac{BC}{AE}=1\left(DPCM\right)\)

Khách vãng lai đã xóa
bui van trong
15 tháng 2 2021 lúc 20:17

DAY LA HINH 

Khách vãng lai đã xóa
Nguyễn Võ Thảo Vy
Xem chi tiết
Nguyễn Thị Thủy
Xem chi tiết
Nguyễn Tất Đạt
11 tháng 1 2019 lúc 20:24

A B C M N O E F D H R Q P G

a) Dễ thấy: ^CMN = 900 - ^ACB/2;  ^AOQ = ^OAB + ^OBA = 900 - ^ACB/2 => ^CMN = ^AOQ

=> Tứ giác AOQM nội tiếp => ^AQO = ^AMO = 900 (1)

Tương tự ta có: Tứ giác BOPN nội tiếp => ^BPO = ^BNO = 900 (2)

Từ (1) và (2) => ^AQO = ^BPO hay ^AQB = ^BPA => Tứ giác ABPQ nội tiếp (đpcm).

b) Xét \(\Delta\)AQB vuông tại Q: E là trung điểm cạnh AB => ^EQB = ^EBQ = ^ABC/2 = ^QBC 

=> QE // BC (2 góc so le trong bằng nhau). Mà EF là đường trung bình tam giác ABC nên EF // AB

Do đó 3 điểm E,Q,F thẳng hàng (Tiên đề Ơ-clit) (đpcm).

c) Sửa điểm E thành điểm R cho đỡ trùng.

+) C/m : ^BAC = 900 => AR = AC ?

Chứng minh tương tự câu b ta có: PE //AC, gọi G là hình chiếu của O trên cạnh AB

Do ^BAC = 900 => AB vuông góc AC. Từ đó: AC // OG // PE. Áp dụng hệ quả ĐL Thales thì có:

\(\frac{r}{AD}=\frac{OG}{AD}=\frac{EG}{EA}=\frac{PO}{PA}=\frac{ON}{AR}=\frac{r}{AR}\)=> AD=AR (đpcm).

+) C/m : AR = AD => ^BAC = 900 ?

Lại theo hệ quả ĐL Thales, ta có các tỉ số: \(\frac{OG}{AD}=\frac{r}{AR}=\frac{ON}{AR}=\frac{PO}{PA}=\frac{EO}{ED}\)

=> OG // AC (ĐL Thales đảo). Mà OG vuông góc AB => AB vuông  góc AC hay ^BAC = 900 (đpcm).

d) Hệ thức cần chứng minh \(\Leftrightarrow r\left(AB+BC+CA\right)=OC\left(MN+2PQ\right)\)

\(\Leftrightarrow S_{ABC}=S_{CMON}+2S_{CPOQ}\Leftrightarrow2S_{AOB}=2S_{CPOQ}\Leftrightarrow S_{AOB}=S_{CPOQ}\) 

\(\Leftrightarrow OG.AB=OC.PQ\Leftrightarrow\frac{PQ}{AB}=\frac{OG}{OC}\Leftrightarrow\frac{OQ}{OA}=\frac{OM}{OC}\)(Do tứ giác ABPQ nội tiếp)

\(\Leftrightarrow\Delta AOQ~\Delta COM\left(g.g\right)\Leftrightarrow\hept{\begin{cases}\widehat{AQO}=\widehat{CMO}\left(=90^0\right)\\\widehat{OAQ}=\widehat{OCM}\left(=\widehat{OMQ}\right)\end{cases}}\)(Điều này hiển nhiên đúng)

Vậy hệ thức cần chứng minh là đúng => ĐPCM.

Lê Quốc Anh
Xem chi tiết
Nguyễn Hoàng Tuấn Lâm
21 tháng 2 2021 lúc 9:28

định lý Ceva

Khách vãng lai đã xóa
Khương Vũ Phương Anh
Xem chi tiết
Hiếu Minh
Xem chi tiết
Anh Khương Vũ Phương
Xem chi tiết
Kesbox Alex
10 tháng 7 2017 lúc 9:57

batngo

Anh Khương Vũ Phương
10 tháng 7 2017 lúc 10:37

A B C I M N P d O E

Qua A kẻ đường thẳng d // BC, \(d\cap CP=\left\{O\right\}\), \(d\cap BI=\left\{E\right\}\)

\(\Delta\)OAP và \(\Delta\)PBC có OA//BC nên \(\dfrac{PA}{PB}=\dfrac{OA}{BC}\)

\(\Delta\)AEN và \(\Delta\)BNC có AE//BC nên \(\dfrac{NA}{NC}=\dfrac{AE}{BC}\)

suy ra \(\dfrac{PA}{PB}+\dfrac{NA}{NC}=\dfrac{OA}{BC}+\dfrac{AE}{BC}=\dfrac{OE}{BC}\)(1)

\(\Delta\)AIE và \(\Delta\)BIC có AE//BC nên \(\dfrac{IA}{IM}=\dfrac{IE}{BC}\)

\(\Delta\)OIE và \(\Delta\)BIC có OE//BC nên \(\dfrac{IA}{IM}=\dfrac{OE}{BC}\)

suy ra \(\dfrac{IA}{AM}=\dfrac{OE}{BC}\)(2)

Từ (1) và (2) \(\Rightarrow\)\(\dfrac{IA}{IM}=\dfrac{PA}{PB}+\dfrac{NA}{NC}\) (dpcm)

Anh Khương Vũ Phương
10 tháng 7 2017 lúc 10:39

Vừa nghĩ ra cách giảihaha