Kẻ CG//AB(G thuộc QP)
Xét ΔRBP có CG//RP
nên PC/PB=CG/RB=PG/PR
Xét ΔQAR và ΔQCG có
góc QAR=góc QCG
góc AQR=góc CQG
=>ΔQAR đồng đạng với ΔQCG
=>QA/QC=QR/QG=AR/CG
PB*PC*QC/QA=RB/CG*CG/AR=RB/RA
=>PB/PC*QC/QA*RA/RB=1
Kẻ CG//AB(G thuộc QP)
Xét ΔRBP có CG//RP
nên PC/PB=CG/RB=PG/PR
Xét ΔQAR và ΔQCG có
góc QAR=góc QCG
góc AQR=góc CQG
=>ΔQAR đồng đạng với ΔQCG
=>QA/QC=QR/QG=AR/CG
PB*PC*QC/QA=RB/CG*CG/AR=RB/RA
=>PB/PC*QC/QA*RA/RB=1
Bài1: Cho tam giác ABC, DE//BC, D thuộc AB, E thuộc AC. Trên tia đối tia CA lấy F sao cho CF= BD. DF cắt BC tại M. a) MD/MF=ACIAB b) Cho BC=8;BD=5;DE=3. Chứng minh tam giác ABC cân.
Bài2: Cho hình thang ABCD, AB//CD, M là trung điểm của CD, AM cắt BD tại I, BM cắt AC tại K a) IK//AB b) IK cắt AD và BC tại E,F. Chứng minh El=KF c) AC cắt BD tại O. Qua O vẽ đường thắng // AB cắt AD, BC tại M,N. Chứng minhh MO=NO và 2/MN= 1/AB+1/CD
Bài3 (HSG) Cho tam giác ABC đường thẳng qua A cắt BC, CA, AB tại M,N,P. chứng minh MB/MC. NC/NA. PA/PB=1
Cho tam giác ABC:điểm I nằm trong tam giác.IA,IB,IC lần lượt cắt BC,CA,AB tại M,N,P.Chứng minh:MB/MC*NC/NA*PA/PB=1
Cho tam giác ABC có O nằm trong tam giác. Đường thẳng qua O song song với BC cắt AB,AC tại M,N. Đường thẳng qua O song song với AB cắt AC, BC tại F, E. Đường thẳng qua O song song với AC cắt AB, BC tại I, K.
Chứng minh: \(\dfrac{AI}{AB}+\dfrac{BE}{BC}+\dfrac{CN}{AC}=1\)
Cho tam giác ABC . E là trung điểm AB. Trên nửa mặt phẳng bờ BC có chứa A vẽ tia Cx song song AB, qua E vé đường thẳng song song với BC cắt AC tại D và cắt Cx tại F, BF cắt AC tại I.
Chứng minh \(\frac{1}{IC}\)=\(\frac{1}{CD}\)+\(\frac{1}{CA}\)Bài 1. Cho DABC, kẻ phân giác trong và ngoài của góc B cắt AC ở I và D. Từ C kẻ đường thẳng song song với AB cắt BI, BD lần lượt tại E, F.
a) Chứng minh IB.IC = IA.IE;
b) Chứng minh CE = CF.
c) Từ I, D kẻ đường thẳng song song với BC cắt đường thẳng AB lần lượt tại M, N. Tính độ dài AB, MN; EF nếu MI = 4cm và BC = 12cm.
Cho tam giác ABC, lấy điểm M thuộc BC và N thuộc AM. Gọi I,K lần lượt là trung điểm của BN và CN. Tia MI cắt AB tại E, tia MK cắt AC tại F. Chứng minh EF song song BC
Cho tg ABC 1 điểm I nằm trg t/g , đường thẳng IA,IB IC theo thứ tự cắt BC,CA,Ab tại M,N,P.Qua A kẻ đt // BC , đt này cắt BN tại E và CD tại F . Cm NA/NC + PA/PB = IA/IM .