Những câu hỏi liên quan
Nhàn Nguyễn
Xem chi tiết
Akai Haruma
6 tháng 3 2019 lúc 1:58

Lời giải:

Áp dụng BĐT AM-GM ta có:

\(\frac{a}{a+1}+\frac{2b}{b+1}+\frac{3c}{c+1}\leq 1(*)\)

\((*)\Rightarrow \frac{1}{a+1}=1-\frac{a}{a+1}\geq \frac{2b}{b+1}+\frac{3c}{c+1}=\frac{b}{b+1}+\frac{b}{b+1}+\frac{c}{c+1}+\frac{c}{c+1}+\frac{c}{c+1}\geq 5\sqrt[5]{\frac{b^2c^3}{(b+1)^2(c+1)^3}}(1)\)

\((*)\Rightarrow \frac{1}{b+1}=1-\frac{b}{b+1}\geq \frac{a}{a+1}+\frac{b}{b+1}+\frac{3c}{c+1}=\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}+\frac{c}{c+1}+\frac{c}{c+1}\geq 5\sqrt[5]{\frac{abc^3}{(a+1)(b+1)(c+1)^3}}(2)\)

\((*)\Rightarrow \frac{1}{c+1}=1-\frac{c}{c+1}\geq \frac{a}{a+1}+\frac{2b}{b+1}+\frac{2c}{c+1}=\frac{a}{a+1}+\frac{b}{b+1}+\frac{b}{b+1}+\frac{c}{c+1}+\frac{c}{c+1}\geq 5\sqrt[5]{\frac{ab^2c^2}{(a+1)(b+1)^2(c+1)^2}}(3)\)

Lấy \((1).(2)^2.(3)^3\) rồi rút gọn ta suy ra \(ab^2c^3\leq \frac{1}{5^6}\)

Dấu "=" xảy ra khi $a=b=c=\frac{1}{5}$

Min
Xem chi tiết
Thắng Nguyễn
28 tháng 4 2017 lúc 20:47

Từ \(\frac{a}{1+a}+\frac{2b}{1+b}+\frac{3c}{1+c}+\frac{5d}{1+d}\le1\)

\(\Rightarrow1-\frac{a}{1+a}+2-\frac{2b}{1+b}+3-\frac{3c}{1+c}+5-\frac{5d}{1+d}\ge10\)

\(\Rightarrow\frac{1}{1+a}+\frac{2}{1+b}+\frac{3}{1+c}+\frac{5}{1+d}\ge10\)

Áp dụng BĐT AM-GM ta có: 

\(\frac{1}{a+1}\ge\)\(\frac{2b}{1+b}+\frac{3c}{1+c}+\frac{5d}{1+d}\ge10\sqrt[10]{\frac{b^2c^3d^5}{\left(1+b\right)^2\left(1+c\right)^3\left(1+d\right)^5}}\)

Và \(\frac{1}{1+b}\ge\)\(\frac{a}{1+a}+\frac{b}{b+1}+\frac{3c}{c+1}+\frac{5d}{d+1}\)

\(\ge10\sqrt[10]{\frac{abc^3d^5}{\left(1+a\right)\left(1+b\right)\left(1+c\right)^3\left(1+d\right)^5}}\)

Và \(\frac{1}{1+c}\ge\frac{a}{1+a}+\frac{2b}{b+1}+\frac{2c}{c+1}+\frac{5d}{d+1}\)

\(\ge10\sqrt[10]{\frac{ab^2c^2d^5}{\left(1+a\right)\left(1+b\right)^2\left(1+c\right)^2\left(1+d\right)^5}}\)

Và \(\frac{1}{1+d}\ge\frac{a}{a+1}+\frac{2b}{b+1}+\frac{3c}{c+1}+\frac{4d}{d+1}\)

\(\ge10\sqrt[10]{\frac{ab^2c^3d^4}{\left(1+a\right)\left(1+b\right)^2\left(1+c\right)^3\left(1+d\right)^4}}\)

Nhân theo vế 4 BĐT có: \(\frac{1}{\left(1+a\right)\left(1+b\right)^2\left(1+c\right)^3\left(1+d\right)^5}\)

\(\ge10^{1+2+3+5}\sqrt[10]{\frac{a^{2+3+5}b^{2+2+6+10}c^{3+6+6+15}d^{5+10+15+20}}{\left(1+a\right)^{10}\left(1+b\right)^{20}\left(1+c\right)^{30}\left(1+d\right)^{50}}}\)

Tương đương với \(ab^2c^3d^5\le\frac{1}{10^{11}}\) (ĐPCM)

nguyen van
11 tháng 5 2017 lúc 19:40

kho ko

supernub
4 tháng 1 2020 lúc 16:28

Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:

Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mìnhChỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.
Khách vãng lai đã xóa
Nguyễn Thùy Trang
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Tran Le Khanh Linh
21 tháng 7 2020 lúc 20:11

a) Chứng minh được BĐT \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)(*)

Dấu "=" xảy ra <=> a=b

Áp dụng BĐT (*) vào bài toán ta có:

\(\hept{\begin{cases}\frac{1}{2x+y+z}=\frac{1}{x+y+x+y}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\\\frac{1}{x+2y+z}=\frac{1}{x+y+y+z}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\\\frac{1}{x+y+2z}=\frac{1}{x+y+z+z}\le\frac{1}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\end{cases}}\)

\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\cdot2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)

Tiếp tục áp dụng BĐT (*) ta có:

\(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right);\frac{1}{y+z}\le\frac{1}{4}\left(\frac{1}{y}+\frac{1}{z}\right);\frac{1}{z+x}\le\frac{1}{4}\left(\frac{1}{z}+\frac{1}{x}\right)\)

\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\cdot2\cdot\frac{1}{4}\cdot2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\)

\(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)

Dấu "=" xảy ra <=> \(x=y=z=\frac{3}{4}\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
21 tháng 7 2020 lúc 20:17

b) áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)ta có:

\(\hept{\begin{cases}\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\\\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{4}{b+c-a+a+c-b}=\frac{4}{2c}=\frac{2}{c}\\\frac{1}{a+b-c}+\frac{1}{a+c-b}\ge\frac{4}{a+b-c+a+c-b}=\frac{4}{2a}=\frac{2}{a}\end{cases}}\)

Cộng theo vế 3 BĐT ta có:

\(2VT\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=2VP\)

\(\Rightarrow VT\ge VP\)

Đẳng thức xảy ra <=> a=b=c

Khách vãng lai đã xóa
Kiệt Nguyễn
21 tháng 7 2020 lúc 20:09

a) 

Áp dụng BĐT Bunyakovsky dạng phân thức

b)

Áp dụng BĐT \(\frac{1}{m}+\frac{1}{n}\ge\frac{4}{m+n}\)

c)

Viết giả thiết lại thành \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)sau đó làm như câu a

EZ game

Khách vãng lai đã xóa
hoàng thị huyền trang
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
Nghiêm Thị Nhân Đức
Xem chi tiết
Copxki Minh
2 tháng 12 2020 lúc 22:25

Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)

\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)

\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)

\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)

\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)

Dấu "=" xảy ra khi x=y=z

Khách vãng lai đã xóa
Sơn Lê
Xem chi tiết
TS Minh Quan
Xem chi tiết
Đình Sang Bùi
16 tháng 8 2018 lúc 20:57

Vô lí vì a+b+c=0\(\Rightarrow\frac{5}{a+b+c}\)không có đáp án