Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hạ Vy

cho a,b,c ≥0 và\(\frac{a}{1+a}+\frac{2b}{1+b}+\frac{3c}{1+c}\le1\). Chứng minh \(ab^2c^3\le\frac{1}{5^6}\)

Nguyễn Việt Lâm
1 tháng 8 2020 lúc 19:17

\(1-\frac{a}{a+1}\ge\frac{2b}{b+1}+\frac{3c}{c+1}\Leftrightarrow\frac{1}{a+1}\ge\frac{b}{b+1}+\frac{b}{b+1}+\frac{c}{c+1}+\frac{c}{c+1}+\frac{c}{c+1}\ge5\sqrt[5]{\frac{b^2c^3}{\left(b+1\right)^2\left(c+1\right)^3}}\)

Tương tự:

\(\frac{1}{b+1}\ge\frac{a}{a+1}+\frac{b}{b+1}+3.\frac{c}{c+1}\ge5\sqrt[5]{\frac{abc^3}{\left(a+1\right)\left(b+1\right)\left(c+1\right)^3}}\)

\(\Leftrightarrow\frac{1}{\left(b+1\right)^2}\ge25\sqrt[5]{\frac{a^2b^2c^6}{\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^6}}\)

\(\frac{1}{c+1}\ge\frac{a}{a+1}+2.\frac{b}{b+1}+2.\frac{c}{c+1}\ge5\sqrt[5]{\frac{ab^2c^2}{\left(a+1\right)\left(b+1\right)^2\left(c+1\right)^2}}\)

\(\Leftrightarrow\frac{1}{\left(c+1\right)^3}\ge125\sqrt[5]{\frac{a^3b^6c^6}{\left(a+1\right)^3\left(b+1\right)^6\left(c+1\right)^6}}\)

Nhân vế với vế:

\(\frac{1}{\left(a+1\right)\left(b+1\right)^2\left(c+1\right)^3}\ge5^6\sqrt[5]{\frac{a^5b^{10}c^{15}}{\left(a+1\right)^5\left(b+1\right)^{10}\left(c+1\right)^{15}}}=\frac{5^6ab^2c^3}{\left(a+1\right)\left(b+1\right)^2\left(c+1\right)^3}\)

\(\Leftrightarrow ab^2c^3\le\frac{1}{5^6}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{5}\)


Các câu hỏi tương tự
bach nhac lam
Xem chi tiết
Nguyễn Thu Ngà
Xem chi tiết
trung le quang
Xem chi tiết
Phác Chí Mẫn
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
Trần Thanh Phương
Xem chi tiết
Duyen Đao
Xem chi tiết
Nguyễn Bùi Đại Hiệp
Xem chi tiết