Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kun ZERO
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 2 2020 lúc 6:24

\(\frac{1}{x^3y^3}+\frac{1}{x^3y^3}+1\ge\frac{3}{x^2y^2}\) ; \(\frac{y^3}{z^3}+\frac{y^3}{z^3}+1\ge\frac{3y^2}{z^2}\) ; \(x^3z^3+x^3z^3+1\ge3x^2z^2\)

\(\Rightarrow2VT+3\ge2\left(\frac{1}{x^2y^2}+\frac{y^2}{z^2}+x^2z^2\right)+\left(\frac{1}{x^2y^2}+\frac{y^2}{z^2}+x^2z^2\right)\ge2\left(\frac{1}{x^2y^2}+\frac{y^2}{z^2}+x^2z^2\right)+3\sqrt[3]{\frac{x^2y^2z^2}{x^2y^2z^2}}\)

Dấu "=" xảy ra khi \(x=y=z=1\)

Khách vãng lai đã xóa
Trần Minh Phương
Xem chi tiết
Mr Lazy
8 tháng 8 2016 lúc 22:06

+\(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=3\)

+\(3+2\left(xy+yz+zx\right)=x^2+y^2+z^2+2\left(xy+yz+zx\right)=\left(x+y+z\right)^2\le9\)

\(\Rightarrow B=\frac{1}{1+\sqrt{3+2\left(xy+yz+zx\right)}}\ge\frac{1}{1+3}=\frac{1}{4}\)

+\(A=\frac{x^2}{y+2z}+\frac{y^2}{z+2x}+\frac{z^2}{x+2y}=\frac{x^4}{x^2y+2zx^2}+\frac{y^4}{y^2z+2xy^2}+\frac{z^4}{z^2x+2yz^2}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2z+z^2x+2\left(xy^2+yz^2+zx^2\right)}\)

Áp dụng bđt Bunhiacopxki

\(x^2y+y^2z+z^2x=x.xy+y.yz+z.zx\le\sqrt{x^2+y^2+z^2}.\sqrt{x^2y^2+y^2z^2+z^2x^2}\)

\(\le\sqrt{x^2+y^2+z^2}.\sqrt{\frac{\left(x^2+y^2+z^2\right)^2}{3}}=3\)

(áp dụng \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\))

Tương tự: \(xy^2+yz^2+zx^2\le3\)

\(\Rightarrow B\ge\frac{3^2}{3+2.3}=1\)

\(VT=A+B\ge1+\frac{1}{4}=\frac{5}{4}=VP\)

Cool Boy
8 tháng 8 2016 lúc 21:56

dvdfhfeye5

Phạm Minh Quang
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 5 2020 lúc 23:32

\(\sqrt{x^2+y^2+y^2}\ge\sqrt{3\sqrt[3]{x^2y^4}}=\sqrt{3}.\sqrt[3]{xy^2}\)

\(\Rightarrow VT\ge\sqrt{3}\left(\frac{\sqrt[3]{xy^2}}{z}+\frac{\sqrt[3]{yz^2}}{x}+\frac{\sqrt[3]{zx^2}}{y}\right)\)

\(\Rightarrow VT\ge3\sqrt{3}\sqrt[3]{\frac{\sqrt[3]{xy^2.yz^2.zx^2}}{xyz}}=3\sqrt{3}.\sqrt[3]{\frac{\sqrt[3]{x^3y^3z^3}}{xyz}}=3\sqrt{3}\)

Dấu "=" xảy ra khi \(x=y=z\)

Phạm Minh Quang
14 tháng 5 2020 lúc 22:56

@Nguyễn Việt Lâm

肖赵战颖
Xem chi tiết
Quốc Bảo
Xem chi tiết
Kuro Kazuya
9 tháng 2 2017 lúc 13:51

\(\frac{x^3}{2x+3y+5z}+\frac{y^3}{2y+3z+5x}+\frac{z^3}{2z+3x+5y}\)

\(\Leftrightarrow\frac{x^4}{2x^2+3xy+5xz}+\frac{y^4}{2y^2+3zy+5xy}+\frac{z^4}{2z^2+3xz+5yz}\)

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow\frac{x^4}{2x^2+3xy+5xz}+\frac{y^4}{2y^2+3yz+5xy}+\frac{z^4}{2z^2+3xz+5yz}\ge\frac{\left(x^2+y^2+z^2\right)^2}{2x^2+2y^2+2z^2+8xy+8yz+8xz}\)

\(\Leftrightarrow\frac{x^4}{2x^2+3xy+5xz}+\frac{y^4}{2y^2+3yz+5xy}+\frac{z^4}{2z^2+3xz+5yz}\ge\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)

Xét \(\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)

Áp dụng bất đẳng thức Cauchy cho 3 bộ số thực không âm

\(\Rightarrow\left\{\begin{matrix}x^2+y^2\ge2\sqrt{x^2y^2}=2xy\\y^2+z^2\ge2\sqrt{y^2z^2}=2yz\\x^2+z^2\ge2\sqrt{x^2z^2}=2xz\end{matrix}\right.\)

Cộng từng vế:

\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)

\(\Rightarrow xy+yz+xz\le x^2+y^2+z^2\)

\(\Rightarrow8\left(xy+yz+xz\right)\le8\left(x^2+y^2+z^2\right)\)

\(\Rightarrow2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)\le10\left(x^2+y^2+z^2\right)\)

\(\Rightarrow\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{10\left(x^2+y^2+z^2\right)}=\frac{x^2+y^2+z^2}{10}\)

Ta có: \(x^2+y^2+z^2\ge\frac{1}{3}\)

\(\Rightarrow\frac{x^2+y^2+z^2}{10}\ge\frac{1}{30}\)

\(\Rightarrow\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\ge\frac{1}{30}\)

\(\frac{x^4}{2x^2+3xy+5xz}+\frac{y^4}{2y^2+3yz+5xy}+\frac{z^4}{2z^2+3xz+5yz}\ge\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)

\(\Rightarrow\frac{x^4}{2x^2+3xy+5xz}+\frac{y^4}{2y^2+3yz+5xy}+\frac{z^4}{2z^2+3xz+5yz}\ge\frac{1}{30}\)

\(\Leftrightarrow\frac{x^3}{2x+3y+5z}+\frac{y^3}{2y+3z+5x}+\frac{z^3}{2z+3x+5y}\ge\frac{1}{30}\) ( đpcm )

Điệp Trần
11 tháng 2 2017 lúc 14:12

bucminh chịu chết

Nam Thanh Long
Xem chi tiết
alibaba nguyễn
22 tháng 5 2017 lúc 11:19

\(\frac{x^2}{2y}+\frac{y^2}{2x}+\frac{y^2}{2z}+\frac{z^2}{2y}+\frac{z^2}{2x}+\frac{x^2}{2z}\ge\frac{\left(2x+2y+2z\right)^2}{4\left(x+y+z\right)}=x+y+z\)

Khởi My
Xem chi tiết
Sengoku
1 tháng 6 2019 lúc 20:34

đặt A=\(\frac{1}{x\left(x+1\right)}\) +\(\frac{1}{y\left(y+1\right)}\) +\(\frac{1}{z\left(z+1\right)}\)=\(\frac{1}{x}\)-\(\frac{1}{x+1}\)+\(\frac{1}{y}\)-\(\frac{1}{y+1}\)+\(\frac{1}{z}\)-\(\frac{1}{z+1}\)

Áp dụng BĐT phụ \(\frac{1}{a}\)+\(\frac{1}{b}\)\(\frac{4}{a+b}\) (bạn tự chứng minh nha,quy đồng ,nhân chéo ,chuyển về )⇒\(\frac{1}{a+b}\)\(\frac{1}{4}\)(\(\frac{1}{a}\)+\(\frac{1}{b}\))

⇒A≥\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)-\(\frac{1}{4}\)(\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)+3)

⇒A≥\(\frac{3}{4}\) (\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\))-\(\frac{3}{4}\)\(\frac{3}{4}\) (\(\frac{9}{x+y+z}\))-\(\frac{3}{4}\)

⇒a≥\(\frac{9}{4}\)-\(\frac{3}{4}\)=\(\frac{3}{2}\) dpcm

Sengoku
1 tháng 6 2019 lúc 20:36

dấu bằng xảy ra⇔x=y=z=1

Minh Phương
Xem chi tiết
Siêu Nhân Lê
1 tháng 11 2016 lúc 21:51

ngu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleuchó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa

trần cẩm tú
Xem chi tiết