Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chuột yêu Gạo
Xem chi tiết
Huyền Anh Kute
27 tháng 7 2019 lúc 20:12

Bài Làm:

a, \(P=\frac{x+3}{\sqrt{x}-2}:\left(\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\right)\)

\(=\frac{x+3}{\sqrt{x}-2}:\left(\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)

\(=\frac{x+3}{\sqrt{x}-2}:\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x-3}{\sqrt{x}-2}:\frac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x-3}{\sqrt{x}-2}:\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x+3}{\sqrt{x}-2}:\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{x+3}{\sqrt{x}-2}:\frac{\sqrt{x}}{\sqrt{x}-2}\)

\(=\frac{x+3}{\sqrt{x}-2}.\frac{\sqrt{x}-2}{\sqrt{x}}=\frac{x+3}{\sqrt{x}}\)

Chuột yêu Gạo
Xem chi tiết
Lê Nguyễn Ngọc Trâm
Xem chi tiết
@Nk>↑@
12 tháng 12 2019 lúc 22:28

a)\(M=\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right):\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\left(\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}.\left(\sqrt{x}+1\right)\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}-2}\)

b)\(\frac{1}{M}=\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\sqrt{x}+1-3}{\sqrt{x}+1}=1-\frac{3}{\sqrt{x}+1}\)

Ta có: \(\sqrt{x}\ge0,\forall x\ge0\)

\(\Leftrightarrow\sqrt{x}+1\ge1\)

\(\Leftrightarrow\frac{1}{\sqrt{x}+1}\le1\)

\(\Leftrightarrow\frac{3}{\sqrt{x}+1}\le3\)

\(\Leftrightarrow-\frac{3}{\sqrt{x}+1}\ge-3\)

\(\Leftrightarrow1-\frac{3}{\sqrt{x}+1}\ge-2\)

Dấu "=" xảy ra khi x=0

Vậy \(Min_{\frac{1}{M}}=-2\) khi x=0

Khách vãng lai đã xóa
Sonyeondan Bangtan
Xem chi tiết
Vũ Hoàng
15 tháng 12 2019 lúc 21:27

1, a, ĐKXĐ: x > 0

\(\Rightarrow P=\frac{\sqrt{x}\left(x\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+1\)

\(\Rightarrow P=\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-2\sqrt{x}-1+1\)

\(\Rightarrow P=\sqrt{x}\left(\sqrt{x}+1\right)-2\sqrt{x}\)

\(\Rightarrow P=x+\sqrt{x}-2\sqrt{x}\)

\(\Rightarrow P=x-\sqrt{x}\)

b, Thay x=100 vào biểu thức P, ta có:

P= 100 - \(\sqrt{100}\)

\(\Rightarrow P=100-10=90\)

Vậy với x=100 thì P=90

c, Ta có: P= \(x-\sqrt{x}=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Dấu "=" xảy ra khi...

2, a, ĐKXĐ: x \(\ge\) 0, x \(\ne\) 1

\(\Rightarrow A=\left(\frac{x+3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}+2}\right):\frac{1}{x-1}\)

\(\Rightarrow A=\left(\frac{x+3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right).\frac{x-1}{1}\)

\(\Rightarrow A=\left(\frac{x+3\sqrt{x}-1-\sqrt{x}-2-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right).\frac{x-1}{1}\)

\(\Rightarrow\)A= \(\frac{x+\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}.\frac{x-1}{1}\)= x-1

b, Để \(\frac{1}{A}\)là số tự nhiên (x \(\ge0\), \(x\ne1\))

\(\Rightarrow x-1=1\)

\(\Rightarrow x=2\)

Vậy x=2 thì \(\frac{1}{A}\) là số tự nhiên.

Khách vãng lai đã xóa
Đừng gọi tôi là Jung Hae...
Xem chi tiết
Nguyễn Thị Ngọc Trinh
Xem chi tiết
Bùi Thế Hào
10 tháng 8 2017 lúc 14:22

\(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{x-9}\right]:\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

a/ \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt[]{x-3}\right)}\right]:\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)

=> \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3}{\sqrt[]{x-3}}\right]:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

=> \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}-3}+1\right]:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

=> \(R=\left[\frac{2\sqrt{x}+\sqrt{x}-3}{\sqrt{x}-3}\right].\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

=> \(R=\frac{3\sqrt{x}-3}{\sqrt{x}-3}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)

b/ Để R<-1   => \(\frac{3\left(\sqrt{x}-1\right)}{\sqrt{x}+1}< -1\)

<=> \(3\sqrt{x}-3< -\sqrt{x}-1\)

<=> \(4\sqrt{x}< 2\)=> \(\sqrt{x}< \frac{1}{2}\) => \(-\frac{1}{4}< x< \frac{1}{4}\)

Nguyễn Thị Ngọc Trinh
10 tháng 8 2017 lúc 15:33

Chỗ => R = \(\left(\frac{2\sqrt{x}}{\sqrt{x}-3}+1\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)   là sao vậy ạ?

Bùi Thế Hào
12 tháng 8 2017 lúc 11:06

Thì \(\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3}{\sqrt{x}-3}=\frac{\sqrt{x}-3}{\sqrt{x}-3}=1\)

Trần Thị Hảo
Xem chi tiết
💋Amanda💋
17 tháng 8 2019 lúc 13:33
https://i.imgur.com/17SmMAw.jpg
💋Amanda💋
17 tháng 8 2019 lúc 13:44

Hỏi đáp ToánHỏi đáp Toán

💋Amanda💋
17 tháng 8 2019 lúc 13:49
https://i.imgur.com/lqbVlIK.jpg
Huong Bui
Xem chi tiết
Tô Hồng Nhân
6 tháng 10 2015 lúc 18:52

Câu này bạn làm tương tự như câu trên nha

tick cho mình nha

Nhok baka
Xem chi tiết
Vũ Huy Hoàng
10 tháng 7 2019 lúc 7:15

a) ĐKXĐ: x ≠ 1; x ≥ 0

\(P=\frac{\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)-\left(x+2\right)\left(\sqrt{x}+1\right)+\left(\sqrt{x}+1\right)\left(x-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(P=\frac{x\sqrt{x}+2x-\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(P=\frac{\sqrt{x}+2}{x+\sqrt{x}+1}\)

b) \(Q=\)\(\frac{2}{P}+\sqrt{x}=\frac{2\left(x+\sqrt{x}+1\right)}{\sqrt{x}+2}+\sqrt{x}=\frac{3x+4\sqrt{x}+2}{\sqrt{x}+2}\)

\(Q=\frac{\left(3x+6\sqrt{x}\right)-\left(2\sqrt{x}+4\right)+6}{\sqrt{x}+2}=3\sqrt{x}-2+\frac{6}{\sqrt{x}+2}\)

\(Q=3\left(\sqrt{x}+2\right)-8+\frac{6}{\sqrt{x}+2}\ge2\sqrt{3.\left(\sqrt{x}+2\right).\frac{6}{\sqrt{x}+2}}-8=6\sqrt{2}-8\)

Dấu "=" xảy ra khi \(x=6\pm4\sqrt{2}\)

Vậy GTNN của Biểu thức Q là \(6\sqrt{2}-8\)