Ôn tập chương 1: Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sonyeondan Bangtan

1. Cho biểu thức P = \(\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+1\) (với x > 0)

a) Rút gọn biểu thức P

b) Cho x=100, tính giá trị của P

c) Tìm GTNN của P

2. Cho biểu thức A=\(\left(\frac{x+\sqrt{9x}-1}{x+\sqrt{x}-2}-\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}+2}\right):\frac{1}{x-1}\) (với x \(\ge\) 0, x \(\ne\) 1)

a) Rút gọn biểu thức A

b) Tìm số tự nhiên x để \(\frac{1}{A}\) là số tự nhiên

Vũ Hoàng
15 tháng 12 2019 lúc 21:27

1, a, ĐKXĐ: x > 0

\(\Rightarrow P=\frac{\sqrt{x}\left(x\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+1\)

\(\Rightarrow P=\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-2\sqrt{x}-1+1\)

\(\Rightarrow P=\sqrt{x}\left(\sqrt{x}+1\right)-2\sqrt{x}\)

\(\Rightarrow P=x+\sqrt{x}-2\sqrt{x}\)

\(\Rightarrow P=x-\sqrt{x}\)

b, Thay x=100 vào biểu thức P, ta có:

P= 100 - \(\sqrt{100}\)

\(\Rightarrow P=100-10=90\)

Vậy với x=100 thì P=90

c, Ta có: P= \(x-\sqrt{x}=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Dấu "=" xảy ra khi...

2, a, ĐKXĐ: x \(\ge\) 0, x \(\ne\) 1

\(\Rightarrow A=\left(\frac{x+3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}+2}\right):\frac{1}{x-1}\)

\(\Rightarrow A=\left(\frac{x+3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right).\frac{x-1}{1}\)

\(\Rightarrow A=\left(\frac{x+3\sqrt{x}-1-\sqrt{x}-2-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right).\frac{x-1}{1}\)

\(\Rightarrow\)A= \(\frac{x+\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}.\frac{x-1}{1}\)= x-1

b, Để \(\frac{1}{A}\)là số tự nhiên (x \(\ge0\), \(x\ne1\))

\(\Rightarrow x-1=1\)

\(\Rightarrow x=2\)

Vậy x=2 thì \(\frac{1}{A}\) là số tự nhiên.

Khách vãng lai đã xóa

Các câu hỏi tương tự
WonMaengGun
Xem chi tiết
Nguyễn Thành Long
Xem chi tiết
WonMaengGun
Xem chi tiết
WonMaengGun
Xem chi tiết
Triết Phan
Xem chi tiết
hỏa quyền ACE
Xem chi tiết
N.H Nguyễn
Xem chi tiết
Linh Nguyen
Xem chi tiết
Trương Nguyên Đại Thắng
Xem chi tiết