Giải phương trình
\(\sqrt{5-3x}=\sqrt{2x+8}\)
giải phương trình:
1,\(\sqrt{3x-8}\)-\(\sqrt{x+1}\)=\(\dfrac{2x-11}{5}\)
2,3x2-3x+18=10\(\sqrt{x^3+8}\)
3,\(\sqrt{5+2x}\)+\(\sqrt{5-2x}\)+5=3\(\sqrt{25-4x^2}\)
giải phương trình :
a,\(\sqrt{2x^2+13x+5}+\sqrt{2x^2-3x+5}=8\sqrt{x}\)
b, \(\sqrt{x^2-\dfrac{4}{3}}+2\sqrt{x^2-1}=x\)
a.
ĐKXĐ: \(x\ge0\)
\(\sqrt{2x^2+13x+5}-5\sqrt{x}+\sqrt{2x^2-3x+5}-3\sqrt{x}=0\)
\(\Leftrightarrow\dfrac{2x^2-12x+5}{\sqrt{2x^2+13x+5}+5\sqrt{x}}+\dfrac{2x^2-12x+5}{\sqrt{2x^2-3x+5}+3\sqrt{x}}=0\)
\(\Leftrightarrow\left(2x^2-12x+5\right)\left(\dfrac{1}{\sqrt{2x^2+13x+5}+5\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-3x+5}+3\sqrt{x}}\right)=0\)
\(\Leftrightarrow2x^2-12x+5=0\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: \(x^2\ge\dfrac{4}{3}\)
\(\sqrt{x^2-\dfrac{4}{3}}+\sqrt{4x^2-4}-x=0\)
\(\Leftrightarrow\sqrt{\dfrac{3x^2-4}{3}}+\dfrac{3x^2-4}{\sqrt{4x^2-4}+x}=0\)
\(\Leftrightarrow\sqrt{3x^2-4}\left(\dfrac{1}{\sqrt{3}}+\dfrac{\sqrt{3x^2-4}}{\sqrt{4x^2-4}+x}\right)=0\)
\(\Leftrightarrow3x^2-4=0\)
\(\Leftrightarrow...\)
Giải phương trình
\(\left(\sqrt{2x-4}-\sqrt{5-x}\right)\sqrt{3x-3}=3x-9\)
ĐKXĐ: \(2\le x\le5\)
\(\left(\sqrt{2x-4}-\sqrt{5-x}\right)\sqrt{3x-3}=3x-9\)
\(\Leftrightarrow\dfrac{\left(3x-9\right)\sqrt{3x-3}}{\sqrt{2x-4}+\sqrt{5-x}}=3x-9\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-9=0\Rightarrow x=3\\\dfrac{\sqrt{3x-3}}{\sqrt{2x-4}+\sqrt{5-x}}=1\left(1\right)\end{matrix}\right.\)
Xét (1):
\(\Leftrightarrow\sqrt{3x-3}=\sqrt{2x-4}+\sqrt{5-x}\)
\(\Leftrightarrow3x-3=x+1+2\sqrt{\left(2x-4\right)\left(5-x\right)}\)
\(\Leftrightarrow x-2=\sqrt{\left(2x-4\right)\left(5-x\right)}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\\left(x-2\right)^2=\left(2x-4\right)\left(5-x\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\\left(x-2\right)\left(3x-12\right)=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
Vậy pt có 3 nghiệm \(x=\left\{2;3;4\right\}\)
Giải phương trình:
a) \(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)
b) \(\sqrt{2x^2-1}+x\sqrt{2x-1}=2x^2\)
c) \(\dfrac{2\sqrt{2}}{\sqrt{x+1}}+\sqrt{x}=\sqrt{x+9}\)
b)đk:\(x\ge\dfrac{1}{2}\)
Có: \(\sqrt{2x^2-1}\le\dfrac{2x^2-1+1}{2}=x^2\)
\(x\sqrt{2x-1}=\sqrt{\left(2x^2-x\right)x}\le\dfrac{2x^2-x+x}{2}=x^2\)
=>\(\sqrt{2x^2-1}+x\sqrt{2x-1}\le2x^2\)
Dấu = xảy ra\(\Leftrightarrow x=1\)
Vậy....
c) đk: \(x\ge0\)
\(\Leftrightarrow\sqrt{x}=\sqrt{x+9}-\dfrac{2\sqrt{2}}{\sqrt{x+1}}\)
\(\Rightarrow x=x+9+\dfrac{8}{x+1}-4\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\)
\(\Leftrightarrow0=9+\dfrac{8}{x+1}-4\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\)
Đặt \(a=\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\left(a>0\right)\)
\(\Leftrightarrow\dfrac{a^2-2}{2}=\dfrac{8}{x+1}\)
pttt \(9+\dfrac{a^2-2}{2}-4a=0\) \(\Leftrightarrow a=4\) (TM)
\(\Rightarrow4=\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\) \(\Leftrightarrow16=\dfrac{2\left(x+9\right)}{x+1}\) \(\Leftrightarrow x=\dfrac{1}{7}\) (TM)
Vậy ...
a)ĐKXĐ: x≥-1/3; x≤6
<=>\(\dfrac{3x-15}{\sqrt{3x+1}+4}+\dfrac{x-5}{\sqrt{x-6}+1}+\left(x-5\right)\cdot\left(3x+1\right)=0\Leftrightarrow\left(x-5\right)\cdot\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{\sqrt{x-6}+1}+3x+1\right)=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)(nhận)
(vì x≥-1/3 nên3x+1≥0 )
Giải phương trình
\(\sqrt{3x^2-2x+15}+\sqrt{3x^2-2x+8}=7\)
\(7=\sqrt{3x^2-2x+15}+\sqrt{3x^2-2x+8}=\frac{\left(3x^2-2x+15\right)-\left(3x^2-2x+8\right)}{\sqrt{3x^2-2x+15}-\sqrt{3x^2-2x+8}}\\ \)
\(=\frac{7}{a-b}\)=> a-b = 1 và a+b=7
=> dễ dàng tìm x
Giải bất phương trình :
a, \(\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}\dfrac{< }{ }5\sqrt{x+1}\)
b, \(2x\sqrt{x}+\dfrac{5-4x}{\sqrt{x}}\dfrac{>}{ }\sqrt{x+\dfrac{10}{x}-2}\)
c, \(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8< 0\)
Giải phương trình : \(\sqrt{2x-3}+\sqrt{5-2x}=3x^2-12x+14\)
ĐKXĐ: ...
\(VT\le\sqrt{2\left(2x-3+5-2x\right)}=2\)
\(VP=3\left(x-2\right)^2+2\ge2\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}2x-3=5-2x\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow x=2\)
giải phương trình: \(\sqrt{2x+6}\) - \(\sqrt{5x-1}\) = \(\sqrt{3x+5}\) - 2
ĐKXĐ: \(x\ge\dfrac{1}{5}\)
\(\Leftrightarrow\sqrt{3x+5}-\sqrt{2x+6}+\sqrt{5x-1}-2=0\)
\(\Leftrightarrow\dfrac{x-1}{\sqrt{3x+5}+\sqrt{2x+6}}+\dfrac{5\left(x-1\right)}{\sqrt{5x-1}+2}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt{3x+5}+\sqrt{2x+6}}+\dfrac{5}{\sqrt{5x-1}+2}\right)=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Giải phương trình: \(\sqrt{x^2-1}-\sqrt{3x^2+4x+1}=\left(8-2x\right)\sqrt{x+1}\)
Đk: \(\left\{{}\begin{matrix}x^2-1\ge0\\3x^2+4x+1\ge0\\x+1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x+1\right)\ge0\\3\left(x+\dfrac{1}{3}\right)\left(x+1\right)\ge0\\x\ge-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\\\left[{}\begin{matrix}x\ge-\dfrac{1}{3}\\x\le-1\end{matrix}\right.\\x\ge-1\end{matrix}\right.\)\(\Rightarrow x=-1\)
Thay x=-1 vào pt thấy thỏa mãn
Vậy pt có nghiệm duy nhất x=-1
Giải hệ phương trình: \(\left\{{}\begin{matrix}\sqrt{x+y-4}+\sqrt{2x+y}=19\\\sqrt{2x+y}-3x+5y=-8\end{matrix}\right.\)
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{2x+y}=a\ge0\\\sqrt{x+y-4}=b\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x+y=a^2\\x+y=b^2+4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=a^2-b^2-4\\y=-a^2+2b^2+8\end{matrix}\right.\)
Ta được hệ:
\(\left\{{}\begin{matrix}a+b=19\\a-3\left(a^2-b^2-4\right)+5\left(-a^2+2b^2+8\right)=-8\end{matrix}\right.\)
Tới đây chắc là đơn giản rồi đúng không? Thế trên xuống dưới là xong thôi