Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Uzumaki Naruto
Xem chi tiết
Trần Kim Khánh
18 tháng 1 2018 lúc 14:11

(a^2+b^2+c^2) x 2 = 2 x (a^4+b^4+c^4)

suy ra: (a+b+c)^2 x 2 = (a+b+c)^4 x 2

Mà a+b+c= 0(gt)

suy ra: 0^2 x 2=0^4 x 2

0 = 0

=)))

MyNameNhii
Xem chi tiết
Akai Haruma
19 tháng 4 2021 lúc 2:36

Lời giải:
Áp dụng BĐT Bunhiacopxky:

$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$

$\Leftrightarrow a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3}=\frac{(\frac{3}{2})^2}{3}=\frac{3}{4}$

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c=\frac{1}{2}$.

 

Thảo Vũ
Xem chi tiết
VUX NA
Xem chi tiết
Nguyễn Hoài Đức CTVVIP
21 tháng 8 2021 lúc 19:56

(a2+b2+c2)3(a2+b2+c2)3 ≥ 9(a + b + c)

VyLinhLuân
21 tháng 8 2021 lúc 19:58

(a2+b2+c2)3(a2+b2+c2)3 ≥ 9(a + b + c)

VyLinhLuân
21 tháng 8 2021 lúc 19:58

chúc bn hok tốt

Nguyễn Lưu Hương
Xem chi tiết
Nguyễn Lưu Hương
2 tháng 8 2017 lúc 9:40

lam giong nhu khuyen hoang nhung me bao lo

(a+2)2 = 0,2

(b-3)4= 2

(5-c)6=0

Hoài Thu Vũ
Xem chi tiết
Akai Haruma
31 tháng 7 2023 lúc 21:03

Lời giải:
Áp dụng BĐT Bunhiacopxky:

$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$

$\Rightarrow a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3}$

$\Rightarrow (a^2+b^2+c^2)^3\geq \frac{(a+b+c)^6}{27}$

Áp dụng BĐT Cô-si: $a+b+c\geq 3\sqrt[3]{abc}=3$

$\Rightarrow (a^2+b^2+c^2)^3\geq \frac{(a+b+c)^6}{27}\geq \frac{(a+b+c).3^5}{27}=9(a+b+c)$
Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

Lizy
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 1 lúc 20:56

Hiển nhiên \(a;b;c\ne0\)

Đặt \(a^2-ab=b^2-bc-c^2-ca=k\ne0\) (do a;b;c phân biệt và khác 0)

\(\Rightarrow\left\{{}\begin{matrix}a-b=\dfrac{k}{a}\\b-c=\dfrac{k}{b}\\c-a=\dfrac{k}{a}\end{matrix}\right.\)

\(\Rightarrow\left(a-b\right)+\left(b-c\right)+\left(c-a\right)=\dfrac{k}{a}+\dfrac{k}{b}+\dfrac{k}{c}\)

\(\Rightarrow0=\dfrac{k}{a}+\dfrac{k}{b}+\dfrac{k}{c}\)

\(\Rightarrow k\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=0\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{0}{k}=0\)

Trần Cao Cường
Xem chi tiết
Akai Haruma
14 tháng 10 2023 lúc 0:11

Lời giải:

Do $a\geq 4, b\geq 5, c\geq 6$

$\Rightarrow c^2=90-a^2-b^2\leq 90-4^2-5^2=49$

$\Rightarrow c\leq 7$

$a^2=90-b^2-c^2\leq 90-5^2-6^2=29< 81$

$\Rightarrow a< 9$

$b^2=90-a^2-c^2=90-4^2-6^2=38< 64$

$\Rightarrow b< 8$

Vậy $4\leq a< 9, 5\leq b< 8, 6\leq c\leq 7$

Suy ra:

$(a-4)(a-9)\leq 0$

$(b-5)(b-8)\leq 0$

$(c-6)(c-7)\leq 0$

$\Rightarrow (a-4)(a-9)+(b-5)(b-8)+(c-6)(c-7)\leq 0$

$\Rightarrow a^2+b^2+c^2+118\leq 13(a+b+c)$

$\Rightarrow 90+208\leq 13P$
$\Rightarrow P\geq 16$

Vậy $P_{\min}=16$. Giá trị này đạt tại $(a,b,c)=(4,5,7)$

Chí
Xem chi tiết
Nguyễn Xuân Anh
28 tháng 12 2017 lúc 23:18

Đặt dãy tỉ số = k => a = 2014k , b = 2015k , c = 2016k Thay a,b,c vào đẳng thức dưới => ĐPCM 

Nguyễn Xuân Anh
28 tháng 12 2017 lúc 23:23

Nhớ mặt từ sau đừng bảo tui giải cho

Lê Thành Trung
29 tháng 12 2017 lúc 10:12

Ta có :\(\frac{a}{2015}=\frac{b}{2016}=\frac{c}{2017}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{2015}=\frac{b}{2016}=\frac{c}{2017}=\frac{b-a}{2016-2015}=\frac{c-a}{2017-2015}=\frac{c-b}{2017-2016}\)

\(\Rightarrow\frac{b-a}{1}=\frac{c-a}{2}=\frac{c-b}{1}\)

\(\Rightarrow\hept{\begin{cases}2\left(b-a\right)=c-a\\2\left(b-c\right)=c-a\end{cases}\Rightarrow4\left(b-a\right)\left(b-c\right)=\left(c-a\right)^2}\)

๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 4 2021 lúc 21:37

- Nếu \(abc\ge0\Rightarrow a^2+b^2+c^2+abc\ge0\) dấu "=" xảy ra khi và chỉ khi \(a=b=c=0\)

- Nếu \(abc< 0\Rightarrow\)  trong 3 số a; b; c có ít nhất 1 số âm

Không mất tính tổng quát, giả sử \(c< 0\Rightarrow ab>0\)

Mà \(\left\{{}\begin{matrix}-2\le c< 0\\ab>0\end{matrix}\right.\Leftrightarrow abc\ge-2ab\)

\(\Rightarrow a^2+b^2+c^2+abc\ge a^2+b^2-2ab+c^2=\left(a-b\right)^2+c^2>0\) (không thỏa mãn)

Vậy \(a=b=c=0\)