Cho tam giác ABC có 3 góc nhọn nội riếp (O;R). Các đường cao AD, BE, CF cắt nhau tại H. Các đường thẳng BE và CF lần lượt cắt đườn tròn (O;R) tại Q và K
a, Chứng minh bốn điểm B,C,E,F cùng thuộc 1 đường tròn
b, chứng minh KQ// EF
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O;R) (AB
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O;R) (AB<AC) 3 đường cao AD,BE,CF cắt nhau tại H
a,CM tứ giác BFEC nội tiếp và xác định tâm I
b,Đường thẳng EF cắt đường thẳng BC tại K . CM KF.KE=KB.KC
c,AK cắt (O) tại M. CM MFEA nội tiếp
jup mình vs ạ
Cho tam giác ABC có 3 góc nhọn, nội tiếp đường tròn O. Hai đường cao AD, BE cắt nhau tại H. Chứng minh tứ giác ABDE nội tiếp đường tròn
Cho tam giác ABC có 3 gó nhọn , nội tiếp đường tròn O . Hai đường cao AD,BE cắt nhau tại H
a, chứng minh tứ giác ABDE nội tiếp đường tròn
b, Tia AO cắt đương tròn O tại K . Chứng minh tứ giác BHCK là hình bình hành
cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn<O> b BF,CK là các đường cao của tam giác ABC cắt đường tròn <O> tại D,E chứng minh
a, tứ giác BCKF nội tiếp
b, DE // FK
a) Có \(\widehat{BFC}=\widehat{CKB}=90^0\)
=> Tứ giác BCFK nội tiếp
b)Có \(\widehat{BCK}=\widehat{BFK}\)( vì tứ giác BCFK nội tiếp )
mà \(\widehat{BCE}=\widehat{BDE}=\dfrac{1}{2}sđ\stackrel\frown{EB}\)
=> \(\widehat{BFK}=\widehat{BDE}\) mà hai góc nằm ở vị trí hai góc đồng vị
=> KF//DE
cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O). Gọi I là giao điểm của đường cao BH và CK của tam giác ABC. Chứng minh rằng:
a) Tứ giác AHIK nội tiếp
b) góc CAI = góc BCH
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O),đường cao AH.Kẻ đường kính AM.
a.Tính góc ACM.
b.Chứng minh góc BAH = góc OA
\(a,\widehat{ACM}=90^0\) (góc nt chắn nửa đg tròn)
\(b,\widehat{BAH}+\widehat{ABH}=90^0;\widehat{OAC}+\widehat{AMC}=90^0\left(\widehat{ACM}=90^0\right)\)
Mà \(\widehat{ABH}=\widehat{AMC}\left(=\dfrac{1}{2}sđ\stackrel\frown{AC}\right)\)
Do đó \(\widehat{BAH}=\widehat{OAC}\)
Cho tam giác ABC có 3 góc nhọn nội tiếp (O) đường cao BH và CK lần lượt cắt (O) tại E và F a)tứ giác BKHC nội tiếp b) OA vuông góc với EF c) EF song song HK d) Khi tam giác ABC là tam giác đều có cạnh bằng a tính diện tích hình viên phân chắn cung nhỏ BC của (O)
Cho tam giác ABC có 3 góc nhọn nội tiếp (O) đường cao BH và CK lần lượt cắt (O) tại E và F a)tứ giác BKHC nội tiếp b) OA vuông góc với EF c) EF song song HK d) Khi tam giác ABC là tam giác đều có cạnh bằng a tính diện tích hình viên phân chắn cung nhỏ BC của (O)
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O).Các đường cao AD,BE và CF của tam giác ABC cắt nhau tại H.
a.Chứng minh BCEF và CDHE là các tứ giác nội tiếp.
b.Chứng minh EB là tia phân giác của góc FED và tam giác BFE đồng dạng với tam giác DHE.
a: Xét tứ giác BCEF có
\(\widehat{BFC}=\widehat{BEC}=90^0\)
Do đó: BCEF là tứ giác nội tiếp
Xét tứ giác CDHE có
\(\widehat{CDH}+\widehat{CEH}=180^0\)
Do đó: CDHE là tứ giác nội tiếp
b: \(\widehat{FEB}=\widehat{BAD}\)(vì AFHE là tứ giác nội tiếp)
\(\widehat{BED}=\widehat{FCB}\)(BFEC là tứ giác nội tiếp)
mà \(\widehat{BAD}=\widehat{FCB}\)
nên \(\widehat{FEB}=\widehat{BED}\)
hay EB là tia phân giác góc FED
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O;R).Các đường cao BE , CF cắt nhau tại H.
a.Chứng minh tứ giác AEHF,BFCE nội tiếp
b.Chứng minh tam giác AFE đồng dạng với tam giác ACB
a: Xét tứ giác AEHF có
\(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\)
=>AEHF là tứ giác nội tiếp
Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}=90^0\)
=>BFEC là tứ giác nội tiếp
b: BFEC là tứ giác nội tiếp
=>\(\widehat{BFE}+\widehat{BCE}=180^0\)
mà \(\widehat{BFE}+\widehat{AFE}=180^0\)(hai góc kề bù)
nên \(\widehat{AFE}=\widehat{ACB}\)
Xét ΔAFE và ΔACB có
\(\widehat{AFE}=\widehat{ACB}\)
\(\widehat{FAE}\) chung
Do đó: ΔAFE đồng dạng với ΔACB
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O; R). Kẻ đường kính AD. Đường vuông góc với AD tại O cắt AC tại E. Chứng minh:
a) Tứ giác ODCE nội tiếp.
b) EA = ED.
c) AE.AC = 2R2.
Xét đường tròn (O) có: \(\Delta\)ACD nt; AD là đường kính
\(\Rightarrow\) \(\Delta\)ACD là tam giác vuông tại C (sự xác định đường tròn)
\(\Rightarrow\) \(\widehat{C}\) = 90o
Xét tứ giác OECD có: \(\widehat{EOD}+\widehat{C}=90^o+90^o=180^o\) (OE \(\perp\) AD tại O)
\(\widehat{EOD}\) và \(\widehat{C}\) là 2 góc đối nhau
\(\Rightarrow\) Tứ giác OECD nt đường tròn (định lý tứ giác nt)
b, Xét tam giác AED có: EO \(\perp\) AD tại O (gt); EO là trung tuyến ứng với AD
\(\Rightarrow\) \(\Delta\)AED là tam giác cân tại E (dhnb tam giác cân)
\(\Rightarrow\) EA = ED (đpcm)
c, Vì \(\Delta\)AED là tam giác cân tại E (cmb)
\(\Rightarrow\) \(\widehat{EAD}=\widehat{EDA}\) (t/c) (1)
Lại có: \(\Delta\)AOC cân tại O (OA = OC = R)
\(\Rightarrow\) \(\widehat{OAE}=\widehat{OCE}\) (t/c) (2)
Từ (1) và (2) \(\Rightarrow\) \(\widehat{EDA}=\widehat{OCE}\)
Xét tam giác AOC và tam giác AED có:
\(\widehat{A}\) chung
\(\widehat{OCA}=\widehat{EDA}\) (cmt)
\(\Rightarrow\) \(\Delta\)AOC ~ \(\Delta\)AED (gg)
\(\Rightarrow\) \(\dfrac{AO}{AE}=\dfrac{AC}{AD}\) (tỉ số đồng dạng)
\(\Rightarrow\) AE.AC = AO.AD
Mà trong đường tròn (O): AO = R; AD = 2R (AO là bk; AD là đk)
\(\Rightarrow\) AE.AC = R.2R = 2R2 (đpcm)
Chúc bn học tốt!