Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
xzcccccccccc
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 5 2022 lúc 21:26

a: Đề sai rồi bạn

b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

\(\widehat{ABE}=\widehat{HBE}\)

Do đó: ΔBAE=ΔBHE

Suy ra: BA=BH

c: Ta có: \(\widehat{CAH}+\widehat{BAH}=90^0\)

\(\widehat{MAH}+\widehat{BHA}=90^0\)

mà \(\widehat{BAH}=\widehat{BHA}\)

nên \(\widehat{CAH}=\widehat{MAH}\)

hay AH là tia phân giác của góc MAC

Dương Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 2 2022 lúc 21:50

a: Xét tứ giác ABNC có 

M là trung điểm của BC

M là trung điểm của AN

Do đó: ABNC là hình bình hành

mà \(\widehat{CAB}=90^0\)

nên ABNC là hình chữ nhật

Suy ra: AB=NC và ΔCAN vuông tại C

b: Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên AM=1/2BC

Người Vô Danh
24 tháng 2 2022 lúc 22:08

a) Xét tam giác MAB và tam giác MCN có 
MB =MC ( M là tđ BC)

AM =AN (gt)

AMB = CMD ( 2 góc đối đỉnh ) 

=> 2 tam giác = nhau (c-g-c) 

=> AB =NC (2 cạnh tương ứng)

=> góc BAN = góc ANC (2 góc tương ứng)

mà 2 góc ở vị trí so le trong => AB // NC 

=> A + C = 180 ( 2 góc trong cùng phía bù nhau) 

=> 90 + c = 180 => góc C=90 

xét tam giác ACN có góc C =90 => tma giác ACN vuông tại C

b) Xét tam giác ABC vuông tại A có M là trung điểm BC => AM là trung tuyến => AM = BM = CM =1/2 BC(tc) 

c) ta xét tam giác BAN có : AM =MN => M là trung điểm của AN => BM là trung tuyến của AN 

mà BM = AM (cmt ) => BM=AM=MN=1/2AN 

=> tam giác ABN vuông tại B => AB vuông góc với BN 

mà MK vuông góc với BN (gt)=> AB // MK ( từ vuông góc -> //)

mà AB vuông góc AC => MK vuông góc với AC (từ vuông góc -> //)

ta lại có MI cũng vuông góc với AC (gt)

=> M,K,I thẳng hàng (tiên đề ơ clits)

Người Vô Danh
24 tháng 2 2022 lúc 22:21

undefined

Hạ Minh Vũ
Xem chi tiết
Phương Thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 1 2021 lúc 19:56

a) Ta có: \(\widehat{ABC}+\widehat{MBC}=\widehat{ABM}\)(tia BC nằm giữa hai tia BA,BM)

nên \(\widehat{ABC}+\widehat{MBC}=90^0\)(1)

Ta có: \(\widehat{ACB}+\widehat{MCB}=\widehat{ACM}\)(tia CB nằm giữa hai tia CA,CM)

nên \(\widehat{ACB}+\widehat{MCB}=90^0\)(2)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)(3)

Từ (1), (2) và (3) suy ra \(\widehat{MBC}=\widehat{MCB}\)

Xét ΔMBC có \(\widehat{MBC}=\widehat{MCB}\)(cmt)

nên ΔMBC cân tại M(Định lí đảo của tam giác cân)

b) Xét ΔABM vuông tại B và ΔACM vuông tại C có 

AB=AC(ΔABC cân tại A)

BM=CM(ΔMBC cân tại M)

Do đó: ΔABM=ΔACM(hai cạnh góc vuông)

\(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)

mà tia AM nằm giữa hai tia AB,AC

nên AM là tia phân giác của \(\widehat{BAC}\)(đpcm)

Ta có: ΔABM=ΔACM(cmt)

nên \(\widehat{BMA}=\widehat{CMA}\)(hai góc tương ứng)

mà tia MA nằm giữa hai tia MB,MC

nên MA là tia phân giác của \(\widehat{BMC}\)(đpcm)

c) Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(4)

Ta có: MB=MC(ΔMBC cân tại M)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(5)

Từ (4) và (5) suy ra AM là đường trung trực của BC

hay AM⊥BC(đpcm)

Nguyễn Huy Phúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 3 2022 lúc 22:10

1: Xét ΔCMA vuông tại M và ΔCNB vuông tại N có

CA=CB

\(\widehat{ACM}\) chung

Do đó: ΔCMA=ΔCNB

2: Xét ΔCAB có CN/CA=CM/CB

nên NM//BA

Nguyễn Thị Thu
Xem chi tiết
Dung Trần
Xem chi tiết
Nguyễn Phương
Xem chi tiết
Phạm Vĩnh Linh
27 tháng 7 2021 lúc 7:19

Bài làm hoàn chỉnh đây nhé bn

undefined

Phạm Vĩnh Linh
27 tháng 7 2021 lúc 7:05

Xem lại đề câu c nhé bn

undefined

Hà Khánh Vân
Xem chi tiết
Trịnh Linh
Xem chi tiết
Lotus
10 tháng 11 2019 lúc 7:55

a)ta có AB=AC

=)TAM giác ABC cân tại A 

=)Góc B2=góc C1

Lại có B1+B2=180độ(kề bù)

C1+C2=180độ(kề bù)

mà B2=C1(cmt)

=)B1=C2

Xét tam giác ABM và tam giác ACN có

BM=CN(GT)

B1=C2(CMT)

AB=AC(GT)

=)TAM giác ABM = tam giác ACN (c-g-c)

=)AM=AN(2 cạnh tương ứng )

bạn tự viết kí hiệu nhá mik ko bít cách viết

Khách vãng lai đã xóa
Lotus
10 tháng 11 2019 lúc 8:01

b)ta có tam giác ABM=tam giác ACN (cmt)

=)góc M=góc N (2 góc tương ứng)

xét tam giác vuông BME và tam giác vuông CNF có

BM=CN(gt)

góc M=GÓC N(cmt)

=)tam giác vuông BME=tam giác vuông CNF (cạnh huyền-góc nhọn)

Khách vãng lai đã xóa
Lotus
10 tháng 11 2019 lúc 8:14

c)gọi H là giao điểm của BC và AO 

xét tam giác BHA và tam giac CHA

AH chung

AB=AC(GT)

B2=C1(CMT)

=)TAM GIÁC BHA=tam giác CHA(c-g-c)

=)HC=HB(2 cạnh tương ứng)

Mà tam giác ABC cân tại A (cmt)

=)AH hay AO là tia phân giác của GÓC BAC (trong tam giác cân đường trung tuyến là đường phân giác)

Lại có tam giác ABM=tam giác ACM (cmt)

=)góc A1 = GÓC A4

có A2=A3 ( AO là phân giác của góc BAC)

=)A1+A2=A3+A4

=) AO là tia phân giác góc MAN

Khách vãng lai đã xóa