Những câu hỏi liên quan
Phương Tuyết
Xem chi tiết

Đặt: \(\hept{\begin{cases}\frac{1-a}{1+a}=x\\\frac{1-b}{1+b}=y\\\frac{1-c}{1+c}=z\end{cases}}\)

\(\Rightarrow-1< x,y,z< 1\)và \(\hept{\begin{cases}\frac{1-x}{1+x}=a\\\frac{1-y}{1+y}=b\\\frac{1-z}{1+z}=c\end{cases}}\)

Theo đề bài ta có: \(abc=1\Rightarrow\left(1-x\right)\left(1-y\right)\left(1-z\right)=\left(1+x\right)\left(1+y\right)\left(1+z\right)\)

\(\Rightarrow x+y+z+xyz=0\)

Mặt khác ta có: \(\frac{4a}{\left(a+1\right)^2}=1-x^2;\frac{2}{a+1}=1+x\)

Và: \(\frac{4b}{\left(b+1\right)^2}=1-y^2;\frac{2}{b+1}=1+y\)

Và: \(\frac{4c}{\left(c+1\right)^2}=1-z^2;\frac{2}{c+1}=1+z\)

Nên: \(\frac{4a}{\left(a+1\right)^2}+\frac{4b}{\left(b+1\right)^2}+\frac{4c}{\left(c+1\right)^2}\le1+2.\frac{2}{a+1}.\frac{2}{b+1}.\frac{2}{c+1}\)

\(\Leftrightarrow x^2+y^2+z^2+\left(xy+yz+zx\right)+2\left(x+y+z+xyz\right)\ge0\)

\(\Leftrightarrow\left(x+y+z\right)^2\ge0\)

Đây là BĐT luôn đúng nên ta có đpcm.

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
26 tháng 1 2020 lúc 20:21

ミ★ᗪเệų ℌųуềй (ßăйǥ ßăйǥ ²к⁶)★彡 Giải ghê quá, t chẳng hiểu gì.

Đặt \(\left(a;b;c\right)=\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\)

BĐT \(\Leftrightarrow \sum\limits_{cyc} \frac{xy}{(x+y)^2} \leq \frac{1}{4}+\frac{4xyz}{(x+y)(y+z)(z+x)}\)

Ta có: \(VP-VT=\frac{4\left(x-y\right)^2\left(y-z\right)^2\left(z-x\right)^2}{4\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2}\ge0\)

BĐT hiển nhiên đúng.

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
26 tháng 1 2020 lúc 20:22

Ôi trời, dòng 3 gõ latex mà olm không hiện à?

BĐT \(\Leftrightarrow\Sigma_{cyc}\frac{xy}{\left(x+y\right)^2}-\frac{1}{4}\le\frac{4xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

Bình luận (0)
 Khách vãng lai đã xóa
Phạm Minh anh
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 8 2020 lúc 18:16

\(3=ab+bc+ca\ge3\sqrt[3]{abc}\Rightarrow abc\le1\)

\(\Rightarrow VT\le\frac{1}{abc+a^2\left(b+c\right)}+\frac{1}{abc+b^2\left(c+a\right)}+\frac{1}{abc+c^2\left(a+b\right)}\)

\(\Rightarrow VT\le\frac{1}{a\left(ab+bc+ca\right)}+\frac{1}{b\left(ab+bc+ca\right)}+\frac{1}{c\left(ab+bc+ca\right)}\)

\(\Rightarrow VT\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{ab+bc+ca}{3abc}=\frac{1}{abc}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)
Nghiêm Thị Nhân Đức
Xem chi tiết
Copxki Minh
2 tháng 12 2020 lúc 22:25

Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)

\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)

\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)

\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)

\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)

Dấu "=" xảy ra khi x=y=z

Bình luận (0)
 Khách vãng lai đã xóa
Phạm Thế Mạnh
Xem chi tiết
Nguyễn Quốc Gia Huy
Xem chi tiết
alibaba nguyễn
22 tháng 8 2017 lúc 7:06

Ta có:

\(\frac{1}{\left(2a+b+c\right)^2}+\frac{1}{\left(a+2b+c\right)^2}+\frac{1}{\left(a+b+2c\right)^2}\)

\(\le\frac{1}{4\left(a+b\right)\left(a+c\right)}+\frac{1}{4\left(b+a\right)\left(b+c\right)}+\frac{1}{4\left(c+a\right)\left(c+b\right)}\)

\(=\frac{2\left(a+b+c\right)}{4\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(=\frac{a+b+c}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Giờ ta cần chứng minh

\(\frac{a+b+c}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{9}{16\left(ab+bc+ca\right)}\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)

Ta có:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-3abc\)

\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{1}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(=\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)

Vậy ta có ĐPCM

Bình luận (0)
Ngọc Ánh
Xem chi tiết
Hoàng Lê Bảo Ngọc
9 tháng 11 2016 lúc 20:05

d/ Đặt \(x=a+b\) , \(y=b+c\) , \(z=c+a\)

thì : \(a=\frac{x+z-y}{2}\) ; \(b=\frac{x+y-z}{2}\) ; \(c=\frac{y+z-x}{2}\)

Ta có : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{\frac{x+z-y}{2}}{y}+\frac{\frac{x+y-z}{2}}{z}+\frac{\frac{y+z-x}{2}}{x}\)

\(=\frac{z+x-y}{2y}+\frac{x+y-z}{2z}+\frac{y+z-x}{2x}=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}+\frac{z}{y}+\frac{y}{z}+\frac{z}{x}+\frac{x}{z}-3\right)\)

\(=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{z}{x}+\frac{x}{z}\right)-\frac{3}{2}\ge\frac{1}{2}.6-\frac{3}{2}=\frac{3}{2}\)

Bình luận (1)
Hoàng Lê Bảo Ngọc
9 tháng 11 2016 lúc 19:58

b/ \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\ge6abc\)

\(\Leftrightarrow\left(a^2b^2-2abc+c^2\right)+\left(b^2c^2-2abc+a^2\right)+\left(c^2a^2-2abc+b^2\right)\ge0\)

\(\Leftrightarrow\left(ab-c\right)^2+\left(bc-a\right)^2+\left(ca-b\right)^2\ge0\) (luôn đúng)

Vậy bđt ban đầu dc chứng minh.

Bình luận (1)
Hoàng Lê Bảo Ngọc
9 tháng 11 2016 lúc 20:00

c/ \(\left(a+b\right)^2\ge4ab\Leftrightarrow\frac{ab}{a+b}\le\frac{a+b}{4}\)

Tương tự : \(\frac{bc}{b+c}\le\frac{b+c}{4}\) ; \(\frac{ac}{a+c}\le\frac{a+c}{4}\)

Cộng theo vế : \(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{a+c}\le\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}\)

Bình luận (0)
trần xuân quyến
Xem chi tiết
alibaba nguyễn
23 tháng 6 2017 lúc 11:19

Đầu tiên ta có:

\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)

\(=\frac{1}{ab+a+1}+\frac{1}{\frac{1}{a}+b+1}+\frac{1}{\frac{1}{b}+\frac{1}{ab}+1}\)

\(=\frac{1}{ab+a+1}+\frac{a}{1+ab+a}+\frac{ab}{a+1+ab}=1\)

Quay lại bài toán ta có:

\(\frac{1}{\left(a+1\right)^2+b^2+1}=\frac{1}{a^2+b^2+2a+2}\le\frac{1}{2\left(ab+a+1\right)}\)

Tương tự ta có:

\(\hept{\begin{cases}\frac{1}{\left(b+1\right)^2+c^2+1}\le\frac{1}{2\left(bc+b+1\right)}\\\frac{1}{\left(c+1\right)^2+a^2+1}\le\frac{1}{2\left(ca+c+1\right)}\end{cases}}\)

Từ đó suy ra 

\(\frac{1}{\left(a+1\right)^2+b^2+1}+\frac{1}{\left(b+1\right)^2+c^2+1}+\frac{1}{\left(c+1\right)^2+a^2+1}\)

\(\le\frac{1}{2}.\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)=\frac{1}{2}\)

Bình luận (0)
Thắng Nguyễn
23 tháng 6 2017 lúc 11:36

Câu hỏi của Nguyễn Trọng Kiên - Toán lớp 9 - Học toán với OnlineMath

Bình luận (0)
Fire Sky
Xem chi tiết
tth_new
9 tháng 8 2019 lúc 18:19

2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.

Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)

\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)

Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)

Từ (2) và (3) ta có đpcm.

Sai thì chịu

Bình luận (0)
tth_new
9 tháng 8 2019 lúc 18:29

Xí quên bài 2 b:v

b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)

Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)

\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)

Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)

Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)

\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

Bình luận (0)
tth_new
14 tháng 11 2019 lúc 13:39

Cách nữa cho bài 2:

2a) Ta có: \(4\left(a^2+1+2\right)\left(1+1+\frac{\left(b+c\right)^2}{2}\right)\ge4\left(a+b+c+1\right)^2\)

Hay \(4\left(a^2+3\right)\left(2+\frac{\left(b+c\right)^2}{2}\right)\ge4\left(a+b+c+1\right)^2=VP\)

Như vậy ta quy bài toán về chứng minh: \(\left(b^2+3\right)\left(c^2+3\right)\ge4\left(2+\frac{\left(b+c\right)^2}{2}\right)\)

\(\Leftrightarrow b^2c^2+b^2+c^2+1\ge4bc\Leftrightarrow\left(bc-1\right)^2+\left(b-c\right)^2\ge0\)(đúng)

Đẳng thức xảy ra khi a = b = c = 1

b) Áp dụng BĐT Bunhiacopxki:\(\left(a^2+\frac{1}{4}+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+b^2+c^2+\frac{1}{2}\right)\ge\frac{1}{4}\left(a+b+c+1\right)^2\)

\(\Rightarrow\frac{5}{4}\left(a^2+1\right)\left(b^2+c^2+\frac{3}{4}\right)\ge\frac{5}{16}\left(a+b+c+1\right)^2\)

Từ đó ta có thể quy bài toán về chứng minh: \(\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(b^2+c^2+\frac{3}{4}\right)\)

...

Bài 3:Sửa đề a, b, c >0

Có:  \(\frac{a^3}{b^2}+\frac{a^3}{b^2}+b\ge3\sqrt[3]{\frac{a^6}{b^3}}=\frac{3a^2}{b}\)

Tương tự: \(\frac{2b^3}{c^2}+c\ge\frac{3b^2}{c};\frac{2c^3}{a^2}+a\ge\frac{3c^2}{a}\)

Cộng theo vế 3 BĐT trên: \(2\left(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}\right)+a+b+c\ge3\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\)

\(=2\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\)

\(\ge2\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+a+b+c\)

Từ đó ta có đpcm.

Bình luận (0)
 Khách vãng lai đã xóa