Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 2 2017 lúc 11:38

Ta có: m < n ⇒ - 6m > - 6n ⇒ 3 – 6m > 3 – 6n

Duong Thi Nhuong
Xem chi tiết
Duong Thi Nhuong
5 tháng 11 2016 lúc 9:33

nơi bài 2 là Cho p là số nguyên tố > 7 nha

Thắng Công
Xem chi tiết
Nguyễn Thanh Hằng
28 tháng 6 2020 lúc 21:43

Xét phương trình :

\(x^2-4x-m^2+6m-5=0\)

\(\left(a=1;b=-4;c=-m^2+6m-5\right)\)

\(b'=-2\)

Ta có :

\(\Delta'=b'^2-ac\)

\(=\left(-2\right)^2-1.\left(-m^2+6m-5\right)\)

\(=4+m^2-6m+5\)

\(=m^2-6m+9\)

\(=\left(m-3\right)^2\ge0\)

\(\Leftrightarrow\) Phương trình luôn có nghiệm với mọi m

Theo định lý Viet ta có :

\(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=-4\\x_1.x_2=\frac{c}{a}=-m^2+6m-5\end{matrix}\right.\)

Ta có :

\(P=x_1^3+x_2^3\)

\(=\left(x_1+x_2\right)\left(x_1^2-x_1.x_2+x_2^2\right)\)

\(=\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1.x_2\right]\)

\(=\left(-4\right)^2\left[\left(-4\right)^2-3\left(-m^2+6m-5\right)\right]\)

\(=16\left[16+3m^2-18m+15\right]\)

\(=16\left(3m^2-18m+31\right)\)

\(=16.3\left(m^2-6m+9\right)+4\)

\(=48\left(m-3\right)^2+4\ge4\)

Dấu "=" xảy ra \(\Leftrightarrow m=3\)

Vậy...

Hồ Sỹ Sơn
Xem chi tiết
Hồ Sỹ Sơn
6 tháng 12 2016 lúc 16:16

giúp mình với nàhum

Đặng Phương Thảo
Xem chi tiết
Đặng Việt Hùng
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 1 2022 lúc 17:29

a: \(\Delta=\left(m-3\right)^2-4\left(2m-1\right)\left(-6m-2\right)\)

\(=m^2-6m+9+4\left(2m-1\right)\left(6m+2\right)\)

\(=m^2-6m+9+4\left(12m^2+4m-6m-2\right)\)

\(=m^2-6m+9+48m^2-8m-8\)

\(=49m^2-14m+1=\left(7m-1\right)^2>=0\)

Vậy: Phương trình luôn có hai nghiệm

b: Các nghiệm của phương trình là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-m+3-7m+1}{2\left(2m-1\right)}=\dfrac{-8m+4}{2\left(2m-1\right)}=-2\\x_2=\dfrac{-m+3+7m-1}{2\left(2m-1\right)}=\dfrac{6m+2}{2\left(2m-1\right)}=\dfrac{3m+1}{2m-1}\end{matrix}\right.\)

Mai Tiến Duy
Xem chi tiết
giang ho dai ca
7 tháng 6 2015 lúc 20:05

x6m+4+x6n+2+1=x6m+4-x4+x6n+2-x2+x4+x2+1

                      =x4.(x6m-1)+x2.(x6n-1)+(x4+x2+1)

Vì x6m-1 chia hết cho x6-1 , x6n-1 chia hết cho x6-1 và 

              x6-1=(x3+1)(x3-1) chia hết cho x2-x+1

              x4+x2+1=(x2+1)2-x2 chia hết cho x2-x+1

 => đpcm

Giai Kỳ
Xem chi tiết
Nguyễn Thanh Hiền
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 2 2019 lúc 12:07

\(x^{6m+4}-x^4+x^{6n+2}-x^2+x^4+x^2+1\)

\(=x^4\left(x^{6m}-1\right)+x^2\left(x^{6n}-1\right)+x^4+x^2+1\)(1)

Ta có \(x^{6n}-1=\left(x^6-1\right)\left(x^{6\left(n-1\right)}+x^{6\left(n-2\right)}+...+x^6+1\right)⋮\left(x^6-1\right)\)

Tương tự \(\left(x^{6n}-1\right)⋮\left(x^6-1\right)\)

\(x^6-1=\left(x^2\right)^3-1=\left(x^2-1\right)\left(x^4+x^2+1\right)⋮\left(x^4+x^2+1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x^{6m}-1\right)⋮\left(x^4+x^2+1\right)\\\left(x^{6n}-1\right)⋮\left(x^4+x^2+1\right)\end{matrix}\right.\) (2)

Từ (1);(2) \(\Rightarrow\left(x^{6m+4}+x^{6n+4}+1\right)⋮\left(x^4+x^2+1\right)\)