Cho 3 số a, b, c thoả mãn a+b+c=10. Chứng minh a^2 + b^2 +c^2 lớn hơn hoặc bằng 100/3.
Cho x,y dương thỏa mãn:
x + y = 3
Chứng minh rằng
x^2×y <= 4
(a^2+b^2+c^2)/3\(\ge\)((a+b+c)/3)^2
Chứng minh bất đẳng thức trên
Giải giúp mình bài này nha, mình cần gấp
chứng minh 1/1 +1/2^2 +1/3^2+...+1/n^2 < 2-1/n
BT1: Cho a,b,c>0. CMR: a2(b+c-a)+b2(c+a-b)+c2(a+b-c)=<3abc
BT2: Cho a,b,c>0. CMR\(\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}>=a+b+c\)
BT3: Cho a,b,c>0 thỏa mãn: abc=ab+bc+ca. Chứng minh:
\(\dfrac{1}{a+2b+3c}+\dfrac{1}{b+2c+3a}+\dfrac{1}{c+2a+3b}=< \dfrac{3}{16}\)
GIÚP MÌNH VỚI. MÌNH ĐANG CẦN GẤP.
1) Chứng minh: 2 (a2 + b2) \(\ge\) (a + b)2.
2) Cho x > 0, y > 0. Chứng minh: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
3) Cho a, b, c là độ dài 3 cạnh của 1 tam giác. Chứng minh:
a2 + b2 + c2 < 2 (ab + bc + ca).
Chứng minh với mọi m , n , q ,p ta đều có :
m2 + n2 + p2 + q2 +1 \(\ge\) m(n +p +q +1 )
: Cho tam giác nhọn ABC, các đường cao AD,BE,CF cắt nhau tại H
a) Chứng minh rằng: ΔBFH ∼ ΔCEH
b) Chứng minh rằng: ΔBDH ∼ ΔBEC
c) Chứng minh rằng: BH.BE+CH.CF=BC^2
d) Gọi M là trung điểm của BC.Đường thẳng vuông góc với HM tại H cắt AB,AC lần lượt lại P,Q. Chứng minh:HP=HQ
Cho hai số a,b thỏa mãn \(a+b\ne0\).
Chứng minh rằng:
\(a^2+b^2+\left(\dfrac{ab+1}{a+b}\right)^2\ge2\)