Cho x,y thỏa mãn (x^2-y^2 2)^2 4x^2y^2 6x^2-y^2.Tìm GTNN của A=x^2 y^2
Cho các số dương x,y,z thỏa mãn x2+y2+z2=1. C/m:
\(\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\ge\frac{1}{3}\)
cho x,y,z,t tùy ý. chứng minh rằng x2+y2+z2+t2 >= x(y+z+t)
Cho x,y là các số dương thỏa mãn x + y =1. Tìm giá trị nhỏ nhất của biểu thức B = 4/x + 9/y
cho x,y,z là 3 số dương thỏa mãn:
xy + yz + xz = 12
tìm giá trị nhỏ nhất M= x4 + y4 + z4
Cho các số thực dương \(x,y,z\) thỏa mãn \(x+y+z=3\)
Tìm GTNN của biểu thức \(P=\dfrac{1}{x^2+x}+\dfrac{1}{y^2+y}+\dfrac{1}{z^2+z}\)
chứng minh rằng bất đẳng thức saux/y +y/x>2 (x và y cùng đấu)
1) Chứng minh: 2 (a2 + b2) \(\ge\) (a + b)2.
2) Cho x > 0, y > 0. Chứng minh: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
3) Cho a, b, c là độ dài 3 cạnh của 1 tam giác. Chứng minh:
a2 + b2 + c2 < 2 (ab + bc + ca).
cho x2 + y2 + z2 = 2 (x,y,z số thực không âm)
chứng minh rằng x+y+z bé hơn hoặc bằng 2+xy