Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phươngtrinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 2 2022 lúc 20:51

a: Xét tứ giác BDHF có 

\(\widehat{BDH}+\widehat{BFH}=180^0\)

Do đó: BDHF là tứ giác nội tiếp

Xét tứ giác BCEF có

\(\widehat{BFC}=\widehat{BEC}=90^0\)

Do đó: BCEF là tứ giác nội tiếp

b: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{BAE}\) chung

Do đó: ΔAEB∼ΔAFC

Suy ra: AE/AF=AB/AC

hay \(AE\cdot AC=AB\cdot AF\)

Phạm Linh
Xem chi tiết
Nguyễn Thị Minh Châu
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 3 2021 lúc 21:58

a) Xét tứ giác BFHD có 

\(\widehat{BFH}\) và \(\widehat{BDH}\) là hai góc đối

\(\widehat{BFH}+\widehat{BDH}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: BFHD là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

\(\widehat{BFC}\) và \(\widehat{BEC}\) cùng nhìn cạnh BC một góc bằng 900

Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

 

gia hân
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 2 2023 lúc 13:49

a: Xét tứ giác BDHF có

góc BDH+góc BFH=180 độ

=>BDHF là tứ giác nội tiếp

b: Xét tứ giác BFEC có

góc BFC=góc BEC=90 độ

=>BFEC là tứ giác nội tiếp

c: Xét ΔHAF vuông tại F và ΔHCD vuông tại D có

góc AHF=góc CHD

=>ΔHAF đồng đạng với ΔHCD

=>HA/HC=HF/HD

=>HA*HD=HF*HC

Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

góc FHB=góc EHC

=>ΔHFB đồng dạng vơi ΔHEC

=>HF/HE=HB/HC

=>HF*HC=HB*HE=HA*HD

d: Xét ΔAEF và ΔABC có

góc AEF=góc ABC

góc FAE chung

=>ΔAEF đồng dạng với ΔABC

Kim Taehyungie
Xem chi tiết
Thảoo Ngu
Xem chi tiết
Nguyễn Demon
Xem chi tiết
xin vĩnh biệt lớp 9
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 1 2023 lúc 21:56

a: Xét tứ giác AEHF có

góc AEH+góc AFH=180 độ

=>AEHF là tứ giác nội tiếp

Xét tứ giác BFEC có

góc BFC=góc BEC=90 độ

=>BFEC là tứ giác nội tiếp

b: Xét (O) có

ΔABK nội tiếp

AK là đường kính

=>ΔABK vuông tại B

=>BK//CH

Xét (O) có

ΔACK nội tiếp

AK là đường kính

=>ΔACK vuông tại C

=>CK//BH

Xét tứ giác BHCK có

BH//CK

BK//CH

=>BHCK là hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

=>I là trung điểm của BC

Minh Thông Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 1 2022 lúc 11:39

1: Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}=90^0\)

Do đó: BFEC là tứ giác nội tiếp

Xét tứ giác AEDB có

\(\widehat{AEB}=\widehat{ADB}=90^0\)

Do đó: AEDB là tứ giác nội tiếp

2: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{EAB}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC

Suy ra: AE/AF=AB/AC

hay \(AE\cdot AC=AB\cdot AF\)