Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhị Lương Thị Như
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 4 2023 lúc 23:01

\(S_{ACBD}=AC^2=2R^2\)

Diện tích phần nằm trong và nằm nằm ngoài hình vuông bằng:

\(S_{tròn}-S_{ACBD}=\left(pi-2\right)\cdot R^2\)(đvdt)

Uyên Bùi
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 4 2017 lúc 13:47

Giải bài 90 trang 104 SGK Toán 9 Tập 2 | Giải toán lớp 9

a) Vẽ hình vuông ABCD có cạnh 4cm.

b) Vẽ hai đường chéo AC và BD. Chúng cắt nhau tại O.

Đường tròn (O; OA) là đường tròn ngoại tiếp hình vuông ABCD.

Ta có:

Giải bài 90 trang 104 SGK Toán 9 Tập 2 | Giải toán lớp 9 (cm)

⇒ R = OA = AC/2 = 2√2 (cm).

c) Gọi H là trung điểm AB.

(O ; OH) là đường tròn nội tiếp hình vuông ABCD.

r = OH = AD/2 = 2cm.

Omamori Katori
Xem chi tiết
Nguyễn Linh Chi
28 tháng 9 2019 lúc 13:41

Giải:

CD vuông AB tại H

=> OA vuông CD tại H

=> CD = 2. CH

Tam giác ACB vuông tại C ( vì AB là đường kính)

=> CB^2 =AB^2 - AC^2= 5^2 - 3^2 =16

=> CB = 4

\(\Rightarrow\frac{1}{CH^2}=\frac{1}{AC^2}+\frac{1}{AB^2}=\frac{1}{3^2}+\frac{1}{4^2}=\frac{25}{144}\)

=> \(CH=\frac{12}{5}\Rightarrow CD=2CH=\frac{24}{5}\)

Mai Tiến Đỗ
Xem chi tiết
Trần Nhật Minh
Xem chi tiết
Kim Tuyền
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 9 2023 lúc 18:44

loading...  

Sách Giáo Khoa
Xem chi tiết
Thien Tu Borum
13 tháng 4 2017 lúc 17:22

a) Vẽ hình vuông cạnh 4cm.

b) Vẽ đường tròn ngoại tiếp hình vuông đó. Tính bán kính R của đường tròn này.

c) Vẽ đường tròn nội tiếp hình vuông đó. Tính bán kính r của đường tròn này.

Hướng dẫn trả lời:

a) Dùng êke ta vẽ hình vuông ABCD có cạnh bằng 4cm như sau:

- Vẽ AB = 4cm.

- Vẽ BC ⊥ AB và BC = 4cm

- Vẽ DC ⊥ BC và DC = 4cm

- Nối D với A, ta có AD ⊥ DC và AD = 4cm

b) Tam giác ABC là tam giác vuông cân nên AB = BC.

Áp dụng định lí Py – ta – go trong tam giác vuông ABC, ta có:

AC2=AB2+BC2=2AB2⇔AC2=2.42=32⇒AC=√32=4√2AC2=AB2+BC2=2AB2⇔AC2=2.42=32⇒AC=32=42

Vậy AO=R=AC2=4√22=2√2AO=R=AC2=422=22

Vậy R = 2√2 cm

c) Vẽ OH ⊥ Dc. Vẽ đường tròn tâm O, bán kính OH. Đó là đường tròn nội tiếp hình vuông ABCD

Ta có: OH=AD2=2(cm)OH=AD2=2(cm)

Vậy r = OH = 2cm


\
Minh Văn
Xem chi tiết
Tô Mì
21 tháng 5 2022 lúc 14:30

a. Ta có : \(\hat{BDM}=90^o\) (kề bù với \(\hat{BDA}\) nội tiếp chắn nửa đường tròn).

\(\hat{BCM}=90^o\left(gt\right)\)

Vậy : BCMD nội tiếp được một đường tròn (\(\hat{BDM}+\hat{BCM}=180^o\)) (đpcm).

 

b. Xét △ADB và △ACM :

\(\hat{ADB}=\hat{ACM}=90^o\)

\(\hat{A}\) chung

\(\Rightarrow\Delta ADB\sim\Delta ACM\left(g.g\right)\)

\(\Rightarrow\dfrac{AD}{AC}=\dfrac{AB}{AM}\Leftrightarrow AD.AM=AB.AC\) (đpcm).

 

c. Ta có : \(OD=OB=BD=R\) ⇒ △ODB đều.

\(\Rightarrow S_{\Delta ODB}=\dfrac{\sqrt{3}}{4}R^2\)

\(\hat{BOD}\) là góc ở tâm chắn cung BD \(\Rightarrow sđ\stackrel\frown{BC}=\hat{BOD}=60^o\) (do △ODB đều).

\(S_{ODB}=\dfrac{\text{π}R^2n}{360}=\dfrac{\text{π}R^2.60}{360}=\dfrac{\text{π}R^2}{6}\)

\(\Rightarrow S_{vp}=S_{ODB}-S_{\Delta ODB}=\dfrac{\text{π}R^2}{6}-\dfrac{\sqrt{3}}{4}R^2\)

\(=\dfrac{\text{π}}{6}R^2-\dfrac{\sqrt{3}}{4}R^2\)

\(=\dfrac{2\text{π}-3\sqrt{3}}{12}R^2\)

Hạnh
Xem chi tiết
Hạnh
28 tháng 11 2017 lúc 10:14

Có ai làm dc bài này k ạ