Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Thị Hằng
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 9 2019 lúc 21:25

ĐKXĐ: \(-\frac{1}{3}\le x\le2\)

\(\Leftrightarrow\frac{4x-1}{\sqrt{3x+1}+\sqrt{2-x}}-\frac{4x-1}{3}=0\)

\(\Leftrightarrow\left(4x-1\right)\left(\frac{1}{\sqrt{3x+1}+\sqrt{2-x}}-\frac{1}{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{4}\\\sqrt{3x+1}+\sqrt{2-x}=3\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2x+3+2\sqrt{\left(3x+1\right)\left(2-x\right)}=9\)

\(\Leftrightarrow\sqrt{-3x^2+5x+2}=3-x\)

\(\Leftrightarrow-3x^2+5x+2=x^2-6x+9\)

\(\Leftrightarrow4x^2-11x+7=0\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{7}{4}\end{matrix}\right.\)

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 10 2019 lúc 14:02

a/ ĐKXĐ: ...

\(\Leftrightarrow2\left(x^2-5x-6\right)+\sqrt{x^2-5x-6}-3=0\)

Đặt \(\sqrt{x^2-5x-6}=a\ge0\)

\(2a^2+a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2-5x-6}=1\Leftrightarrow x^2-5x-7=0\)

b/ ĐKXĐ: ...

\(\Leftrightarrow5\sqrt{3x^2-4x-2}-2\left(3x^2-4x-2\right)+3=0\)

Đặt \(\sqrt{3x^2-4x-2}=a\ge0\)

\(-2a^2+5a+3=0\) \(\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{1}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{3x^2-4x-2}=3\Leftrightarrow3x^2-4x-11=0\)

c/ \(\Leftrightarrow x^2+2x-6+\sqrt{2x^2+4x+3}=0\)

Đặt \(\sqrt{2x^2+4x+3}=a>0\Rightarrow x^2+2x=\frac{a^2-3}{2}\)

\(\frac{a^2-3}{2}-6+a=0\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-5\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x^2+4x+3}=3\Leftrightarrow2x^2+4x-6=0\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
23 tháng 10 2019 lúc 14:07

d/ ĐKXĐ: ...

Đặt \(\sqrt{\frac{3x-1}{x}}=a>0\)

\(2a=\frac{1}{a^2}+1\Leftrightarrow2a^3-a^2-1=0\)

\(\Leftrightarrow\left(a-1\right)\left(2a^2+a+1\right)=0\)

\(\Rightarrow a=1\Rightarrow\sqrt{\frac{3x-1}{x}}=1\Leftrightarrow3x-1=x\)

e/ĐKXĐ: ...

\(\Leftrightarrow2\sqrt{\frac{6x-1}{x}}=\frac{x}{6x-1}+1\)

Đặt \(\sqrt{\frac{6x-1}{x}}=a>0\)

\(2a=\frac{1}{a^2}+1\Leftrightarrow2a^3-a^2-1=0\Leftrightarrow\left(a-1\right)\left(2a^2+a+1\right)=0\)

\(\Rightarrow a=1\Rightarrow\sqrt{\frac{6x-1}{x}}=1\Rightarrow6x-1=x\)

f/ ĐKXĐ: ...

Đặt \(\sqrt{\frac{x}{2x-1}}=a>0\)

\(\frac{1}{a}+1+a=3a^2\)

\(\Leftrightarrow3a^3-a^2-a-1=0\)

\(\Leftrightarrow\left(a-1\right)\left(3a^2+2a+1\right)=0\)

\(\Leftrightarrow a=1\Rightarrow\sqrt{\frac{x}{2x-1}}=1\Rightarrow x=2x-1\)

Khách vãng lai đã xóa
Mai Thị Thúy
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 7 2021 lúc 22:53

a.

\(3\sqrt[3]{3\left(x+1\right)+2}=\left(x+1\right)^3-2\)

Đặt \(\sqrt[3]{3\left(x+1\right)+2}=y\) ta được:

\(\left\{{}\begin{matrix}3y=\left(x+1\right)^3-2\\3\left(x+1\right)+2=y^3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3y+2=\left(x+1\right)^3\\3\left(x+1\right)+2=y^3\end{matrix}\right.\)

\(\Rightarrow\left(x+1\right)^3-y^3=3y-3\left(x+1\right)\)

\(\Leftrightarrow\left(x+1-y\right)\left[\left(x+1\right)^2+y\left(x+1\right)+y^2+3\right]=0\)

\(\Leftrightarrow x+1=y\)

\(\Leftrightarrow\left(x+1\right)^3=y^3\)

\(\Leftrightarrow\left(x+1\right)^3=3\left(x+1\right)+2\)

\(\Leftrightarrow x^3+3x^2-4=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)^2=0\)

Nguyễn Việt Lâm
27 tháng 7 2021 lúc 23:02

b.

\(\Leftrightarrow8x^3-\left(6x+1\right)+2x-\sqrt[3]{6x+1}=0\)

Đặt \(\left\{{}\begin{matrix}2x=a\\\sqrt[3]{6x+1}=b\end{matrix}\right.\) ta được:

\(a^3-b^3+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow2x=\sqrt[3]{6x+1}\)

\(\Leftrightarrow8x^3-6x-1=0\)

Đặt \(f\left(x\right)=8x^3-6x-1\)

\(f\left(x\right)\) là hàm đa thức nên liên tục trên R, đồng thời \(f\left(x\right)\) bậc 3 nên có tối đa 3 nghiệm

\(f\left(-1\right)=-3< 0\) ; \(f\left(-\dfrac{1}{2}\right)=1>0\) \(\Rightarrow f\left(-1\right).f\left(-\dfrac{1}{2}\right)< 0\)

\(\Rightarrow f\left(x\right)\) có 1 nghiệm thuộc \(\left(-1;-\dfrac{1}{2}\right)\) (1)

\(f\left(0\right)=-1\Rightarrow f\left(0\right).f\left(-\dfrac{1}{2}\right)< 0\Rightarrow f\left(x\right)\) có 1 nghiệm thuộc \(\left(-\dfrac{1}{2};0\right)\) (2)

\(f\left(1\right)=1\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) có 1 nghiệm thuộc \(\left(0;1\right)\) (3)

Từ (1);(2);(3) \(\Rightarrow\) cả 3 nghiệm của \(f\left(x\right)\) đều thuộc \(\left(-1;1\right)\)

Do đó, ta chỉ cần tìm nghiệm của \(f\left(x\right)\) với \(x\in\left(-1;1\right)\)

Do \(x\in\left(-1;1\right)\), đặt \(x=cosu\)

\(\Rightarrow8cos^3u-6cosu-1=0\)

\(\Leftrightarrow2\left(4cos^3u-3cosu\right)=1\)

\(\Leftrightarrow2cos3u=1\)

\(\Leftrightarrow cos3u=\dfrac{1}{2}\)

\(\Rightarrow\left[{}\begin{matrix}3u=\dfrac{\pi}{3}+k2\pi\\3u=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u=\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\\u=-\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\end{matrix}\right.\)

Vậy nghiệm của pt là: \(x=cosu=\left\{cos\left(\dfrac{\pi}{9}\right);cos\left(\dfrac{5\pi}{9}\right);cos\left(\dfrac{7\pi}{9}\right)\right\}\)

 

Võ Nhật Minh
Xem chi tiết
Mr Lazy
27 tháng 7 2015 lúc 19:40

ĐK: \(x\ge\frac{2}{3}\)

\(pt\Leftrightarrow5\sqrt{4x+1}-5\sqrt{3x-2}=4x+1-\left(3x-2\right)\)

Đặt \(a=\sqrt{4x+1};\text{ }b=\sqrt{3x-2}\text{ }\left(a;\text{ }b\ge0\right)\)

Pt trở thành: \(5a-5b=a^2-b^2\Leftrightarrow\left(a-b\right)\left(a+b\right)-5\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+b-5\right)=0\)\(\Leftrightarrow a=b\text{ hoặc }a+b=5\)

\(+\text{Nếu }a=b\text{ thì }\sqrt{4x+1}=\sqrt{3x-2}\Leftrightarrow4x+1=3x-2\Leftrightarrow x=-3\text{ }\left(\text{loại}\right)\)

\(+\text{Nếu }a+b=5\text{ thì }\sqrt{4x+1}+\sqrt{3x-2}=5\)

\(\Leftrightarrow4x+1+3x-2+2\sqrt{\left(4x+1\right)\left(3x-2\right)}=25\)

\(\Leftrightarrow2\sqrt{12x^2-5x-2}=26-7x\)

\(\Leftrightarrow4\left(12x^2-5x-2\right)=\left(26-7x\right)^2\text{ và }26-7x\ge0\)

\(\Leftrightarrow x^2-344x+684=0\text{ và }x\le\frac{26}{7}\)

\(\Leftrightarrow\left(x-342\right)\left(x-2\right)=0\text{ và }x\le\frac{26}{7}\)

\(\Leftrightarrow x=342\text{ hoặc }x=2\text{ và }x\le\frac{26}{7}\)

\(\Leftrightarrow x=2\)

\(\text{Kết luận: }x=2.\)

 

 

nguyễn tứ nhị tùng
Xem chi tiết
Nguyễn Thị Thùy Dung
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 2 2019 lúc 17:08

ĐKXĐ: \(x\ge\dfrac{-1}{3};x\ne0\)

\(3x-\left(1-\dfrac{x-1}{4x}\right)=\sqrt{3x+1}\)

\(\Leftrightarrow-3x+\dfrac{3x+1}{4x}+\sqrt{3x+1}=0\)

\(\Leftrightarrow\dfrac{-3}{4}+\dfrac{3x+1}{\left(4x\right)^2}+\dfrac{\sqrt{3x+1}}{4x}=0\)

Đặt \(\dfrac{\sqrt{3x+1}}{4x}=a\Rightarrow a^2+a-\dfrac{3}{4}=0\Rightarrow\left[{}\begin{matrix}a=\dfrac{-3}{2}\\a=\dfrac{1}{2}\end{matrix}\right.\)

TH1: \(a=\dfrac{-3}{2}\Rightarrow\dfrac{\sqrt{3x+1}}{4x}=-\dfrac{3}{2}\Leftrightarrow\sqrt{3x+1}=-6x\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le0\\3x+1=36x^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le0\\36x^2-3x-1=0\end{matrix}\right.\) \(\Rightarrow x=\dfrac{1-\sqrt{17}}{24}\)

TH2: \(a=\dfrac{1}{2}\Rightarrow\dfrac{\sqrt{3x+1}}{4x}=\dfrac{1}{2}\Leftrightarrow\sqrt{3x+1}=2x\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\3x+1=4x^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\4x^2-3x-1=0\end{matrix}\right.\) \(\Rightarrow x=1\)

Nguyễn Anh Dũng An
Xem chi tiết
:vvv
Xem chi tiết
Hung nguyen
8 tháng 8 2021 lúc 10:44

Hung nguyen
8 tháng 8 2021 lúc 10:45


PS: Nãy quên xóa số 4

An Đinh Khánh
Xem chi tiết
HT.Phong (9A5)
27 tháng 6 2023 lúc 14:17

a) \(\sqrt{1-4x+4x^2}=5\) 

\(\Leftrightarrow\sqrt{\left(1-2x\right)^2}=5\)

\(\Leftrightarrow\left|1-2x\right|=5\)

\(\Leftrightarrow2x-1=5\)

\(\Leftrightarrow2x=6\)

\(\Leftrightarrow x=3\)

b) \(\sqrt{x^2+6x+9}=3x-1\)

\(\Leftrightarrow\sqrt{\left(x+3\right)^2=3x-1}\)

\(\Leftrightarrow\left|x+3\right|=3x-1\)

\(\Leftrightarrow x+3=3x-1\)

\(\Leftrightarrow2x=4\)

\(\Leftrightarrow x=2\)

YangSu
27 tháng 6 2023 lúc 14:24

\(a,\sqrt{1-4x+4x^2}=5\\ \Leftrightarrow\sqrt{\left(1-2x\right)^2}=5\\ \Leftrightarrow\left|1-2x\right|=5\)

\(TH_1:x\le\dfrac{1}{2}\)

\(1-2x=5\\ \Leftrightarrow x=-2\left(tm\right)\)

\(TH_2:x\ge\dfrac{1}{2}\)

\(-1+2x=5\\ \Leftrightarrow x=3\left(tm\right)\)

Vậy \(S=\left\{-2;3\right\}\)

\(b,\sqrt{x^2+6x+9}=3x-1\\ \Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\\ \Leftrightarrow\left|x+3\right|=3x-1\)

\(TH_1:x\ge-3\\ x+3=3x-1\\ \Leftrightarrow-2x=-4\Leftrightarrow x=2\left(tm\right)\)

\(TH_2:x< 3\\ -x-3=3x-1\\ \Leftrightarrow-4x=2\\ \Leftrightarrow x=-\dfrac{1}{2}\left(tm\right)\)

Vậy \(S=\left\{2;-\dfrac{1}{2}\right\}\)