Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lý Thời Phong
Xem chi tiết
Phan Thị Hồng Ngọc
Xem chi tiết
Đặng Thanh Tùng
Xem chi tiết
Nguyen Quang Minh
Xem chi tiết
Nhật Nguyễn
27 tháng 4 2021 lúc 12:22

Ai giả câu c bài 2 đi ạ khó quá 

Hoàng Minh Quân
Xem chi tiết
Xem chi tiết

a: Xét tứ giác OBDC có \(\widehat{OBD}+\widehat{OCD}=90^0+90^0=180^0\)

nên OBDC là tứ giác nội tiếp

=>\(\widehat{DOC}=\widehat{DBC}\left(1\right)\)

Xét (O) có

\(\widehat{DBC}\) là góc tạo bởi tiếp tuyến BD và dây cung BC

\(\widehat{BAC}\) là góc nội tiếp chắn cung BC

Do đó: \(\widehat{DBC}=\widehat{BAC}\left(2\right)\)

Từ (1),(2) suy ra \(\widehat{DOC}=\widehat{BAC}\)

b: Ta có: DI//AB

=>\(\widehat{CID}=\widehat{CAB}\)(hai góc đồng vị)

mà \(\widehat{CAB}=\widehat{DBC}\)

và \(\widehat{DBC}=\widehat{DOC}\)

nên \(\widehat{CID}=\widehat{COD}\)

=>CIOD là tứ giác nội tiếp

c: ta có: CIOD là tứ giác nội tiếp

=>\(\widehat{OID}=\widehat{OCD}=90^0\)

=>OI\(\perp\)EF tại I

Ta có: ΔOEF cân tại O

mà OI là đường cao

nên I là trung điểm của EF

=>IE=IF

Nhỏ Dâu Tây
Xem chi tiết
sany
Xem chi tiết
Lê Đức Chí
Xem chi tiết