Bài 3: Cho tam giác nhọn ABC nội tiếp (O). Từ B, C kẻ hai tiếp tuyến với đường tròn, chúng cắt nhau tại D. Từ D kẻ cát tuyến song song với AB cắt đường tròn tại E, F và cắt AC tại I. a) C/m: góc BAC = góc DOC b) C/m: 4 điểm O, I, D, C nằm trên một đường trũn. c) C/m: IE = IF. d) C/m: ID là tia phân giác của góc BIC.
a: Xét tứ giác OBDC có \(\widehat{OBD}+\widehat{OCD}=90^0+90^0=180^0\)
nên OBDC là tứ giác nội tiếp
=>\(\widehat{DOC}=\widehat{DBC}\left(1\right)\)
Xét (O) có
\(\widehat{DBC}\) là góc tạo bởi tiếp tuyến BD và dây cung BC
\(\widehat{BAC}\) là góc nội tiếp chắn cung BC
Do đó: \(\widehat{DBC}=\widehat{BAC}\left(2\right)\)
Từ (1),(2) suy ra \(\widehat{DOC}=\widehat{BAC}\)
b: Ta có: DI//AB
=>\(\widehat{CID}=\widehat{CAB}\)(hai góc đồng vị)
mà \(\widehat{CAB}=\widehat{DBC}\)
và \(\widehat{DBC}=\widehat{DOC}\)
nên \(\widehat{CID}=\widehat{COD}\)
=>CIOD là tứ giác nội tiếp
c: ta có: CIOD là tứ giác nội tiếp
=>\(\widehat{OID}=\widehat{OCD}=90^0\)
=>OI\(\perp\)EF tại I
Ta có: ΔOEF cân tại O
mà OI là đường cao
nên I là trung điểm của EF
=>IE=IF