tìm giá trị nhỏ nhất của biểu thức Q=\(\left|x-2012\right|\)+\(\left|2011-x\right|\)
tìm giá trị nhỏ nhất của biểu thức: \(\sqrt{\left(x+2011\right)^2}\sqrt{\left(x+2012\right)^2}\)
Ở giữa là nhân hay cộng vậy bạn.
Nếu là nhân thì min bằng 0 vì đây là tích 2 số không âm.
Nếu là cộng: \(A=\left|x+2011\right|+\left|2012-x\right|\ge\left|2011+2012\right|=4023\)
và đẳng thức xảy ra, chẳng hạn khi \(x=2012\)
Đề không rõ ràng này tốt nhất thôi A à.
tý nữa lại sủa, tẹo nữa keo nhầm, kết luận làm được rồi không phải giải nữa.
A mới đưa ra được (.);(+) còn chia(/) và (-) nữa
Tìm giá trị nhỏ nhất của biểu thức: B=\(\frac{2011}{2012-\left|x-2010\right|}\)
Cần lời giải gấp ----
đk : \(\left|x-2010\right|\ne2012\)
\(B=\frac{2011}{2012-\left|x-2010\right|}\)
có : \(2011>0\)
để B đạt gtnn thì 2012 - |x - 2010| lớn nhất
mà |x - 2010| > 0
=> 2012 - |x - 2010| = 1
=> |x - 2010| = 2011
=> x - 2010 = 2011 hoặc x - 2010 = -2011
=> x = 4021 hoặc x = -1
tìm giá trị nhỏ nhất của biểu thức:
B=\(\left|x-2010\right|+\left|x-2011\right|+\left|x-2012\right|\)
Với \(\forall x\) ta có :
\(B=\left|x-2010\right|+\left|x-2011\right|+\left|x-2012\right|\)
\(\Leftrightarrow B=\left|x-2010\right|+\left|2011-x\right|+\left|x-2012\right|\)
\(\Leftrightarrow B\ge\left|x-2010\right|+\left|2011-x+x-2012\right|\)
\(\Leftrightarrow B\ge\left|x-2010\right|+1\)
Lại có : \(\left|x-2010\right|\ge0\)
\(\Leftrightarrow\left|x-2010\right|+1\ge1\)
Dấu "=" xảy ra khi \(\Leftrightarrow\left|x-2010\right|=0\)
\(\Leftrightarrow x=2010\)
Vậy \(A_{Min}=1\Leftrightarrow x=2010\)
Oh!!!!!!!! T nhớ t nói làm lại bài này cho Hằng mak quên nè:v
Ngô Tấn Đạt Nguyễn Thanh Hằng
\(L=\left|x-2010\right|+\left|x-2011\right|+\left|x-2012\right|\)
\(L=\left|x-2010\right|+\left|2012-x\right|+\left|x-2011\right|\)
\(L\ge\left|x-2010+2012-x\right|+\left|x-2011\right|\)
\(L\ge2+\left|x-2011\right|\ge2\)
Dấu "=" khi: \(\left\{{}\begin{matrix}2010\le x\le2012\\x=2011\end{matrix}\right.\Leftrightarrow x=2011\)
Tìm giá trị nhỏ nhất của biểu thức:
P = \(\left|x-2012\right|+\left|x-2011\right|\)
P = | x − 2012 | + | x − 2011 |
= \(\left|x-2012\right|+\left|2011-x\right|\ge\left|x-2012+2011-x\right|\)
P \(\ge\left|-1\right|\)
P \(\ge\) 1
Vậy minP = 1
P = \(\left|x-2012\right|+\left|z-2011\right|\)
P = \(\left|2012-x\right|+\left|x-2011\right|\)
Do : \(\left|2012-x\right|\ge2012-x\)
\(\left|x-2011\right|\ge x-2011\)
=> P \(\ge2012-x+x-2011\)
P \(\ge1\)
Dấu "=" xảy ra khi và chỉ khi : \(\left\{{}\begin{matrix}2012-x\ge0\\x-2011\ge0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x\le2012\\x\ge2011\end{matrix}\right.\).
Vậy GTNN của P = 1 khi
P = | x − 2012 | + | x − 2011 |
= \(\left|x-2012\right|+\left|2011-x\right|\ge\left|x-2012+x-2011\right|\) P \(\ge\) \(\left|-1\right|\) P \(\ge\) 1 Vậy minP = 1 * Đã thông qua ý kiến của cô giáo. Yên tâm nhá :))Tính giá trị nhỏ nhất của biểu thức :
A=\(\left|x-2008\right|+\left|x-2009\right|+\left|y-2010\right|+\left|x-2011\right|+2011\)
A=|x-2008|+|2009-x|+|y-2010|+|x-2011|+2011
≥|x-2008+2009-x|+|y-2010|+|x-2011|+2011
= |y-2010|+|x-2011|+2012≥2012
Dấu = xảy ra khi : {y−2010=0x−2011=0{y−2010=0x−2011=0
<=> {y=2010x=2011{y=2010x=2011
Vay GTNN cua A=2012 khi {x=2011;y=2010
Tìm giá trị nhỏ nhất của
\(A=\left(x-2011\right)^2+\left|y-2012\right|+2013\)
Ta có :\(\left(x-2011\right)^2\ge0\)
\(|y-2012|\ge0\)
\(\Rightarrow\left(x-2011\right)^2+|y-2012|+2013\ge2013\)
Để A đạt giá trị nhỏ nhất thì dấu " = " xảy ra khi :
\(A=2013\)
Tìm giá trị nhỏ nhất của biểu thức:
A= (x - 2)2 + | y - x | + 3
B= | x + 5| + 5
C= \(\dfrac{2011}{2012-\left|x-2010\right|}\)
a: \(\left(x-2\right)^2>=0\)
\(\left|y-x\right|>=0\)
Do đó: \(\left(x-2\right)^2+\left|y-x\right|>=0\forall x,y\)
=>\(\left(x-2\right)^2+\left|y-x\right|+3>=3\forall x,y\)
=>A>=3 với mọi x,y
Dấu = xảy ra khi x-2=0 và y-x=0
=>x=2=y
b: \(\left|x+5\right|>=0\)
=>\(\left|x+5\right|+5>=5\)
=>B>=5 với mọi x
Dấu = xảy ra khi x+5=0
=>x=-5
c: \(\left|x-2010\right|>=0\)
=>\(-\left|x-2010\right|< =0\)
=>\(-\left|x-2010\right|+2012< =2012\)
=>\(C=\dfrac{2011}{2012-\left|x-2010\right|}>=\dfrac{2011}{2012}\forall x\)
Dấu = xảy ra khi x=2010
a) Ta có:
\(A=\left(x-2\right)^2+\left|y-x\right|+3\)
Mà: \(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left|y-x\right|\ge0\end{matrix}\right.\)
\(\Rightarrow A=\left(x-2\right)^2+\left|y-x\right|+3\ge3\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}x-2=0\\y-x=0\end{matrix}\right.\)
\(\Rightarrow x=y=2\)
Vậy: \(A_{min}=3\Leftrightarrow x=y=2\)
b) Ta có:
\(B=\left|x+5\right|+5\)
Mà: \(\left|x+5\right|\ge0\)
\(\Rightarrow B=\left|x+5\right|+5\ge5\)
Dấu "=" xảy ra:
\(x+5=0\Rightarrow x=-5\)
Vậy: \(B_{min}=5\Leftrightarrow x=-5\)
c) Ta có:
\(C=\dfrac{2011}{2012-\left|x-2010\right|}\)
Mà: \(\left|x-2010\right|\ge0\)
\(\Rightarrow C=\dfrac{2011}{2012-\left|x-2010\right|}\ge\dfrac{2011}{2012}\)
Dấu "=" xảy ra khi:
\(x-2010=0\Rightarrow x=2010\)
Vậy: \(C_{min}=\dfrac{2011}{2012}\Leftrightarrow x=2010\)
đây là những món quà mà bn sẽ nhận đc: 1: áo quần 2: tiền 3: đc nhiều người yêu quý 4: may mắn cả 5: luôn vui vẻ trong cuộc sống 6: đc crush thích thầm 7: học giỏi 8: trở nên xinh đẹp phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người,
tìm giá trị lớn nhất của biểu thức: \(A=\frac{2011}{\left|x\right|+2012}\)
Vì /x/ >/ 0
=> \(A\le\frac{201}{0+2012}=\frac{2011}{2012}\)
=> Max A =2011/2012 khi x =0
Cho \(f\left(x\right)=\frac{x^3}{1-3x+3x^2}\)hãy tính giá trị biểu thức
\(A=f\left(\frac{1}{2012}\right)+f\left(\frac{2}{2012}\right)+...+f\left(\frac{2010}{2012}\right)+f\left(\frac{2011}{2012}\right)\)
Ta xét : \(f\left(x\right)+f\left(1-x\right)=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{1-3\left(1-x\right)+3\left(1-x\right)^2}\)
\(=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{3x^2-3x+1}=\frac{\left(x+1-x\right)\left(x^2+x^2-2x+1+x^2-x\right)}{3x^2-3x+1}=\frac{3x^2-3x+1}{3x^2-3x+1}=1\)
Áp dụng ta có :
\(A=\left[f\left(\frac{1}{2012}\right)+f\left(\frac{2011}{2012}\right)\right]+\left[f\left(\frac{2}{2012}\right)+f\left(\frac{2010}{2012}\right)\right]+...+\left[f\left(\frac{1006}{2012}\right)+f\left(\frac{1006}{2012}\right)\right]\)
\(=1+1+...+1\)(Có tất cả 1006 số 1)
\(=1006\)