Tính các đạo hàm sau
a) y= \(\sqrt{x+3} + \sqrt{1-x}\) . Giải phương trình y'=0
b) y= \(\dfrac{x}{sin x}\)
c) y= \(\sqrt{x}\). cos x
Tính đạo hàm:
1) \(y = \sin^2 \sqrt {4x+3}\)
2) \(y = \dfrac{3}{4}x^4 - \dfrac{34}{\sqrt{x}} + \pi\)
3) \(y = \sqrt{\dfrac{\sin4x}{\cos(x^2+2)}}\)
4) \(y = \dfrac{1}{\sqrt{\sin^2(6-x)+4x}}\)
5) \(y = x.\sin^2\left(\dfrac{2x-1}{4-x}\right)\)
6) \(y = \dfrac{4}{3}x^3 + \dfrac{3}{2\sqrt{x}} + \sqrt{2x}\)
7) \(y = \sqrt{\cot^3(x^2-1)} + \left(\dfrac{\sin2x}{\cos3x}\right)^4\)
8) \(y = \dfrac{\tan3x}{\cot^23x} - (\sin2x + \cos3x)^5\)
9) \(y = \cot^65x - \cos^43x + \sin3x\)
Coi như tất cả các biểu thức cần tính đạo hàm đều xác định.
1.
\(y'=2sin\sqrt{4x+3}.\left(sin\sqrt{4x+3}\right)'=2sin\sqrt{4x+3}.cos\sqrt{4x+3}.\left(\sqrt{4x+3}\right)'\)
\(=sin\left(2\sqrt{4x+3}\right).\dfrac{4}{2\sqrt{4x+3}}=\dfrac{2sin\left(2\sqrt{4x+3}\right)}{\sqrt{4x+3}}\)
2.
\(y'=3x^3+\dfrac{17}{x\sqrt{x}}\)
3.
\(y'=\dfrac{1}{2\sqrt{\dfrac{sin4x}{cos\left(x^2+2\right)}}}.\left(\dfrac{sin4x}{cos\left(x^2+2\right)}\right)'\)
\(=\dfrac{1}{2\sqrt{\dfrac{sin4x}{cos\left(x^2+2\right)}}}.\dfrac{4cos4x.cos\left(x^2+2\right)+2x.sin4x.sin\left(x^2+2\right)}{cos^2\left(x^2+2\right)}\)
4.
\(y'=-\dfrac{\left(\sqrt{sin^2\left(6-x\right)+4x}\right)'}{sin^2\left(6-x\right)+4x}=-\dfrac{\left[sin^2\left(6-x\right)+4x\right]'}{2\sqrt{\left[sin^2\left(6-x\right)+4x\right]^3}}\)
\(=-\dfrac{2sin\left(6-x\right).\left[sin\left(6-x\right)\right]'+4}{2\sqrt{\left[sin^2\left(6-x\right)+4x\right]^3}}=-\dfrac{-2sin\left(6-x\right).cos\left(6-x\right)+4}{2\sqrt{\left[sin^2\left(6-x\right)+4x\right]^3}}\)
\(=\dfrac{sin\left(12-2x\right)-4}{2\sqrt{\left[sin^2\left(6-x\right)+4x\right]^3}}\)
5.
\(y'=sin^2\left(\dfrac{2x-1}{4-x}\right)+2x.sin\left(\dfrac{2x-1}{4-x}\right).\left[sin\left(\dfrac{2x-1}{4-x}\right)\right]'\)
\(=sin^2\left(\dfrac{2x-1}{4-x}\right)+2x.sin\left(\dfrac{2x-1}{4-x}\right).cos\left(\dfrac{2x-1}{4-x}\right).\left(\dfrac{2x-1}{4-x}\right)'\)
\(=sin^2\left(\dfrac{2x-1}{4-x}\right)+x.sin\left(\dfrac{4x-2}{4-x}\right).\dfrac{7}{\left(4-x\right)^2}\)
8.
\(y=tan^33x-\left(sin2x+cos3x\right)^5\)
\(\Rightarrow y'=3tan^23x.\left(tan3x\right)'-5\left(sin2x+cos3x\right)^4.\left(sin2x+cos3x\right)'\)
\(=\dfrac{9.tan^23x}{cos^23x}-5\left(sin2x+cos3x\right)^4.\left(2cos2x-3sin3x\right)\)
9.
\(y'=6cot^55x.\left(cot5x\right)'-4cos^33x.\left(cos3x\right)'+3cos3x\)
\(=-\dfrac{30.cot^55x}{sin^25x}+12cos^33x.sin3x+3cos3x\)
Tìm đạo hàm của các hàm số sau :
a) \(y=5\sin x-3\cos x\)
b) \(y=\dfrac{\sin x+\cos x}{\sin x-\cos x}\)
c) \(y=x\cos x\)
d) \(y=\dfrac{\sin x}{x}+\dfrac{x}{\sin x}\)
e) \(y=\sqrt{1+2\tan x}\)
f) \(y=\sin\sqrt{1+x^2}\)
a) y' = 5cosx -3(-sinx) = 5cosx + 3sinx;
b) = = .
c) y' = cotx +x. = cotx -.
d) + = = (x. cosx -sinx).
e) = = .
f) y' = (√(1+x2))' cos√(1+x2) = cos√(1+x2) = cos√(1+x2).
Tìm đạo hàm của các hàm số sau :
a) \(y=2\sqrt{x}\sin x-\dfrac{\cos x}{x}\)
b) \(y=\dfrac{3\cos x}{2x+1}\)
c) \(y=\dfrac{t^2+2\cos t}{\sin t}\)
d) \(y=\dfrac{2\cos\varphi-\sin\varphi}{3\sin\varphi+\cos\varphi}\)
e) \(y=\dfrac{\tan x}{\sin x+2}\)
f) \(y=\dfrac{\cot x}{2\sqrt{x}-1}\)
Tìm đạo hàm các hàm số:
1, \(y=\tan(3x-\dfrac{\pi}{4})+\cot(2x-\dfrac{\pi}{3})+\cos(x+\dfrac{\pi}{6})\)
2, \(y=\dfrac{\sqrt{\sin x+2}}{2x+1}\)
3, \(y=\cos(3x+\dfrac{\pi}{3})-\sin(2x+\dfrac{\pi}{6})+\cot(x+\dfrac{\pi}{4})\)
a.
\(y'=\dfrac{3}{cos^2\left(3x-\dfrac{\pi}{4}\right)}-\dfrac{2}{sin^2\left(2x-\dfrac{\pi}{3}\right)}-sin\left(x+\dfrac{\pi}{6}\right)\)
b.
\(y'=\dfrac{\dfrac{\left(2x+1\right)cosx}{2\sqrt{sinx+2}}-2\sqrt{sinx+2}}{\left(2x+1\right)^2}=\dfrac{\left(2x+1\right)cosx-4\left(sinx+2\right)}{\left(2x+1\right)^2}\)
c.
\(y'=-3sin\left(3x+\dfrac{\pi}{3}\right)-2cos\left(2x+\dfrac{\pi}{6}\right)-\dfrac{1}{sin^2\left(x+\dfrac{\pi}{4}\right)}\)
Tìm Max, Min của hàm số:
1) \(y=\dfrac{x+1+\sqrt{x-1}}{x+1+2\sqrt{x-1}}\)
2) \(y=\sin^{2016}x+\cos^{2016}x\)
3) \(y=2\cos x-\dfrac{4}{3}\cos^3x\) trên \(\left[0;\dfrac{\pi}{2}\right]\)
4) \(y=\sin2x-\sqrt{2}x+1,x\in\left[0;\dfrac{\pi}{2}\right]\)
5) \(y=\dfrac{4-cos^2x}{\sqrt{sin^4x+1}},x\in\left[-\dfrac{\pi}{3};\dfrac{\pi}{3}\right]\)
Tính đạo hàm của các hàm số sau :
a) \(y=\dfrac{1+x-x^2}{1-x+x^2}\)
b) \(y=\dfrac{\left(2-x^2\right)\left(3-x^3\right)}{\left(1-x\right)^2}\)
c) \(y=\cos2x-2\sin x\)
d) \(y=\dfrac{\cos x}{2\sin^2x}\)
e) \(y=\cos^2\dfrac{x}{3}\tan\dfrac{x}{2}\)
f) \(y=\sqrt{\sin\left(2x-\dfrac{\pi}{6}\right)}\)
g) \(y=\cos\dfrac{x}{x+1}\)
h) \(y=\dfrac{x^2-1}{\sin3x}\)
i) \(y=3\sin^2x\cos x+\cos^2x\)
k) \(y=\sqrt{7-4x}\cot3x\)
tính đạo hàm của các hàm số sau
a, y=\(-\dfrac{3x^4}{8}+\dfrac{2x^3}{5}-\dfrac{x^2}{2}+5x-2021\)
b, y= \(\sqrt{x^2+4x+5}\)
c, y=\(\sqrt[3]{3x-2}\)
d, y=(2x-1)\(\sqrt{x+2}\)
e, y=\(sin^3\left(\dfrac{\pi}{3}-5x\right)\)
g, y=\(cot^{^4}\left(\dfrac{\pi}{6}-3x\right)\)
a.
\(y'=-\dfrac{3}{2}x^3+\dfrac{6}{5}x^2-x+5\)
b.
\(y'=\dfrac{\left(x^2+4x+5\right)'}{2\sqrt{x^2+4x+5}}=\dfrac{2x+4}{2\sqrt{x^2+4x+5}}=\dfrac{x+2}{\sqrt{x^2+4x+5}}\)
c.
\(y=\left(3x-2\right)^{\dfrac{1}{3}}\Rightarrow y'=\dfrac{1}{3}\left(3x-2\right)^{-\dfrac{2}{3}}=\dfrac{1}{3\sqrt[3]{\left(3x-2\right)^2}}\)
d.
\(y'=2\sqrt{x+2}+\dfrac{2x-1}{2\sqrt{x+2}}=\dfrac{6x+7}{2\sqrt{x+2}}\)
e.
\(y'=3sin^2\left(\dfrac{\pi}{3}-5x\right).\left[sin\left(\dfrac{\pi}{3}-5x\right)\right]'=-15sin^2\left(\dfrac{\pi}{3}-5x\right).cos\left(\dfrac{\pi}{3}-5x\right)\)
g.
\(y'=4cot^3\left(\dfrac{\pi}{6}-3x\right)\left[cot\left(\dfrac{\pi}{3}-3x\right)\right]'=12cot^3\left(\dfrac{\pi}{6}-3x\right).\dfrac{1}{sin^2\left(\dfrac{\pi}{3}-3x\right)}\)
Tìm GTLN, GTNN:
a, \(y=\sin x+\cos x\).
b, \(y=\dfrac{1}{2}\sin x+\dfrac{\sqrt{3}}{2}\cos x+3\).
c, \(y=\sqrt{3}\sin2x-\cos2x\).
a: \(y=\sqrt{2}sin\left(x+\dfrac{pi}{4}\right)\)
\(-1< =sin\left(x+\dfrac{pi}{4}\right)< =1\)
=>\(-\sqrt{2}< =y< =\sqrt{2}\)
\(y_{min}=-\sqrt{2}\) khi sin(x+pi/4)=-1
=>x+pi/4=-pi/2+k2pi
=>x=-3/4pi+k2pi
\(y_{max}=\sqrt{2}\) khi sin(x+pi/4)=1
=>x+pi/4=pi/2+k2pi
=>x=pi/4+k2pi
b: \(y=sinx\cdot cos\left(\dfrac{pi}{3}\right)+cosx\cdot sin\left(\dfrac{pi}{3}\right)+3\)
\(=sin\left(x+\dfrac{pi}{3}\right)+3\)
-1<=sin(x+pi/3)<=1
=>-1+3<=sin(x+pi/3)+3<=4
=>2<=y<=4
y min=2 khi sin(x+pi/3)=-1
=>x+pi/3=-pi/2+k2pi
=>x=-5/6pi+k2pi
y max=4 khi sin(x+pi/3)=1
=>x+pi/3=pi/2+k2pi
=>x=pi/6+k2pi
c: \(y=2\cdot\left(sin2x\cdot\dfrac{\sqrt{3}}{2}-cos2x\cdot\dfrac{1}{2}\right)\)
\(=2sin\left(2x-\dfrac{pi}{6}\right)\)
-1<=sin(2x-pi/6)<=1
=>-2<=y<=2
y min=-2 khi sin(2x-pi/6)=-1
=>2x-pi/6=-pi/2+k2pi
=>2x=-1/3pi+k2pi
=>x=-1/6pi+kpi
y max=2 khi sin(2x-pi/6)=1
=>2x-pi/6=pi/2+k2pi
=>2x=2/3pi+k2pi
=>x=1/3pi+kpi
24. Tìm GTLN của hàm số: \(y=3\cos\left(x-\dfrac{\pi}{2}\right)+1\)
26. a) Tìm GTLN của hàm số: \(y=\cos2x+\sin2x\)
b) Giải PT: \(\sin x+\sqrt{3}\cos x=1\)
24.
\(cos\left(x-\dfrac{\pi}{2}\right)\le1\Rightarrow y\le3.1+1=4\)
\(y_{max}=4\)
26.
\(y=\sqrt{2}cos\left(2x-\dfrac{\pi}{4}\right)\)
Do \(cos\left(2x-\dfrac{\pi}{4}\right)\le1\Rightarrow y\le\sqrt{2}\)
\(y_{max}=\sqrt{2}\)
b.
\(\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx=\dfrac{1}{2}\)
\(\Leftrightarrow cos\left(x-\dfrac{\pi}{6}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{3}+k2\pi\\x-\dfrac{\pi}{6}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\\x=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)