Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Đàm
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 7 2021 lúc 14:24

Thêm điều kiện: a,b,c thỏa mãn là các cạnh của một tam giác

Ta có: \(a< b+c\)

nên \(a^2< ab+ac\)

Ta có: b<a+c

nên \(b^2< ab+bc\)

Ta có: c<a+b

nên \(c^2< ac+bc\)

Do đó: \(a^2+b^2+c^2< 2\left(ab+bc+ac\right)\)

Ank Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 1 2023 lúc 21:43

(a-b)^2=(a-b)(a-b)=a^2-ab-ab+b^2=a^2-2ba+b^2

(a-b)(a+b)=a^2+ab-ab-b^2=a^2-b^2

(a+3)^3=(a+b)^2*(a+b)

=(a^2+2ab+b^2)(a+b)

=a^3+a^2b+2a^2b+2ab^2+b^2a+b^3

=a^3+3a^2b+3ab^2+b^3

Lưu Nhật Minh
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 12 2021 lúc 19:14

Vì a,b,c là 3 cạnh tam giác nên \(a+b>c\Leftrightarrow ac+bc>c^2\)

CMTT: \(ab+bc>b^2;ab+ac>a^2\)

Cộng vế theo vế \(\Leftrightarrow a^2+b^2+c^2< ab+bc+ca+ab+bc+ca\)

\(\Leftrightarrow a^2+b^2+c^2< 2ab+2bc+2ca\\ \Leftrightarrow a^2+b^2+c^2-2ab-2bc-2ca< 0\)

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 1 2019 lúc 13:37

a) Biến đổi vế trái:

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Biến đổi vế trái:

Để học tốt Toán 9 | Giải bài tập Toán 9

( v ì   a   +   b   >   0   n ê n   | a   +   b |   =   a   +   b ;   b 2   >   0 )

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 6 2018 lúc 17:04

Ta có: a - b 2 ≥ 0 a 2 + b 2 - 2 a b ≥ 0

Homin
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 4 2023 lúc 10:16

BĐT cần chứng minh tương đương:

\(a^2+b^2+c^2\ge2ab-2bc+2ca\)

\(\Leftrightarrow a^2+b^2+c^2+2bc-2a\left(b+c\right)\ge0\)

\(\Leftrightarrow a^2+\left(b+c\right)^2-2a\left(b+c\right)\ge0\)

\(\Leftrightarrow\left(a-b-c\right)^2\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 6 2018 lúc 12:28

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Dựng hình vuông ABCD có cạnh bằng (a + b )

Trên cạnh AB dựng điểm E sao cho AE = a, EB = b, trên cạnh BC dựng điểm H sao cho BH = b, HC = a, trên cạnh CD dựng điểm G sao cho CG = b, GD = a, trên cạnh DA dựng điểm K sao cho DK = a, KA = b, GE cắt KH tại F.

Ta có : diện tích hình vuông ABCD bằng a + b 2

Diện tích hình vuông DKFG bằng  a 2

Diện tích hình chữ nhật AKFE bằng a.b

Diện tích hình vuông EBHF bằng  b 2

Diện tích hình chữ nhật HCGF bằng a.b

S A B C D = S D K F G + S A K E F + S E B H F + S H C G F

Vậy ta có :  a + b 2 = a 2 + 2 a b + b 2

Hùng Chu
Xem chi tiết
Dân Chơi Đất Bắc=))))
23 tháng 7 2021 lúc 10:11

đề bài là j vậy???

弃佛入魔
23 tháng 7 2021 lúc 10:11

\(\Leftrightarrow\)\((a-b)^{2}\)\(\ge\)0(luôn đúng)

Phong Thần
23 tháng 7 2021 lúc 10:12

 \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\) với mọi x

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 1 2019 lúc 8:02

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Dựng hình vuông ABCD có cạnh bằng a

Trên cạnh AB lấy điểm E sao cho BE = b

Từ E dựng đường thẳng song song BC cắt CD tại G

Ta có: CG = b, CE = ( a – b ), GD = ( a – b )

Trên cạnh AD lấy điểm K sao cho AK = b

Từ K kẻ đường thẳng song song với AB cắt BC tại H và cắt EG tại F

Ta có: KD = ( a – b ), BH = b

Hình vuông ABCD có diện tích bằng a 2

Hình vuông DKFG có diện tích bằng  a - b 2

Hình chữ nhật AEFK có diện tích bằng ( a – b ) b

Hình vuông EBHF có diện tích bằng  b 2

Hình chữ nhật HCGF có diện tích bằng ( a – b ).b

S A B C D = S D K F G + S A E F K = S E B H F + S H C G F

nên a - b 2 + a - b b + a - b b + b 2 = a 2

a - b 2 = a 2 - 2 a b + b 2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 4 2017 lúc 10:24

a) Ta có M < 1. Mà m > 0 nên m.m < m.1 hay m 2  < m.

b) Từ a > b > 0, ta suy ra được  a 2  > ab >  b 2 . Sử dụng tính chất bắc cầu và liên hệ giữa thứ tự với phép cộng ta có  a 2  -  b 2  > 0.