cho a,b,c > 0 và a+b+c = 3. cmr: \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge ab+bc+ca\)
cho a,b,c ≥0.CMR
a+b+c ≥\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
áp dụng cô si ta có : \(\left\{{}\begin{matrix}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ca}\end{matrix}\right.\)
cộng quế theo quế ta có : \(2a+2b+2c\ge2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\)
\(\Leftrightarrow a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
Cách khác :3
\(a+b+c\text{≥}\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)
⇔ \(2\left(a+b+c\right)\text{≥}2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)
⇔ \(a-2\sqrt{ab}+b+b-2\sqrt{bc}+c+c-2\sqrt{ac}+a\text{ ≥}0\)
⇔\(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{a}-\sqrt{c}\right)^2\text{≥}0\left(luôn-đg\right)\)
\("="\text{⇔}a=b=c\)
cho a,b,c \(\ge\)0 thỏa a+b+c=1.CMR
\(\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}\ge1+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
Ta chứng minh: \(\sqrt{a+bc}\ge a+\sqrt{bc}\)
Thật vậy, ta có:
\(a+bc\ge a^2+2a\sqrt{bc}+bc\)
\(\Leftrightarrow a\ge a^2+2a\sqrt{bc}\)
\(\Leftrightarrow1\ge a+2\sqrt{bc}\)
\(\Leftrightarrow a+b+c\ge a+2\sqrt{bc}\)
\(\Leftrightarrow b+c\ge2\sqrt{bc}\)(Đúng theo Cauchy)
Tương tự: \(\sqrt{b+ca}\ge b+\sqrt{ca}\)
\(\sqrt{c+ab}\ge c+\sqrt{ab}\)
Cộng vế theo vế các BĐT vừa chứng minh ta được đpcm.
Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{3}\)
cho a,b,c>0 thỏa mãn: a+b+c=3
CMR: \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge ab+bc+ca\)
Ta có: \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge ab+bc+ca\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge\left(a+b+c\right)^2=9\)(*) (Do a+b+c = 3)
Ta sẽ c/m BĐT (*) luôn đúng. Thật vậy:
Áp dụng BĐT AM-GM cho 3 số không âm:
\(a^2+\sqrt{a}+\sqrt{a}\ge3\sqrt[3]{a^2\sqrt{a}.\sqrt{a}}=3a\Rightarrow a^2+2\sqrt{a}\ge3a\)
Tương tự: \(b^2+2\sqrt{b}\ge3b;c^2+2\sqrt{c}\ge3c\)
Cộng 3 BĐT trên theo vế thì có: \(a^2+b^2+c^2+2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge3\left(a+b+c\right)=9\)
=> BĐT (*) luôn đúng với mọi a,b,c > 0 t/m a+b+c=3 => BĐT ban đầu đúng
\(\Rightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\ge ab+bc+ca\) (đpcm).
Dấu "=" xảy ra <=> a=b=c=1.
cho a,b,c >0
cmr \(\sqrt{\frac{a+b}{c+ab}}+\sqrt{\frac{b+c}{a+bc}}+\sqrt{\frac{c+a}{b+ca}}\ge\)3
a) Cho a , b > 0 CMR : 3(b2+2a2) ≥ (b+2a)2
b) Cho a,b,c > 0 thõa mãn ab+bc+ca = abc
CMR : \(\dfrac{\sqrt{b^2+2a^2}}{ab}+\dfrac{\sqrt{c^2+2b^2}}{bc}+\dfrac{\sqrt{a^2+2c^2}}{ca}\ge\sqrt{3}\)
a)Bunhia:
\(\left(1+2\right)\left(b^2+2a^2\right)\ge\left(1.b+\sqrt{2}.\sqrt{2}a\right)^2=\left(b+2a\right)^2\)
b)\(ab+bc+ca=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
Áp dụng bđt câu a
=>VT\(\ge\)\(\dfrac{b+2a}{\sqrt{3}ab}+\dfrac{c+2b}{\sqrt{3}bc}+\dfrac{a+2c}{\sqrt{3}ca}\)
\(\Leftrightarrow VT\ge\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{b}+\dfrac{2}{c}+\dfrac{1}{c}+\dfrac{2}{a}=3=VP\)
Tự tìm dấu "="
Nguyễn Việt LâmMashiro ShiinaBNguyễn Thanh HằngonkingCẩm MịcFa CTRẦN MINH HOÀNGhâu DehQuân Tạ MinhTrương Thị Hải Anh
Cho \(a,b,c>0\) thỏa mãn \(ab+bc+ca=3\) . CMR : \(\sqrt[3]{\dfrac{a}{b\left(b+2c\right)}}+\sqrt[3]{\dfrac{b}{c\left(c+2a\right)}}+\sqrt[3]{\dfrac{c}{a\left(a+2b\right)}\ge\dfrac{3}{\sqrt[3]{3}}}\)
Cho a,b,c \(\ge\) 0 . Cmr :
a, \(a+b\ge2\sqrt{ab}\)
b, \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
Cho a,b,c>0 thỏa mãn\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1\). CMR
\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{a+b}\ge\dfrac{1}{2}\)
Áp dụng BĐT BSC:
\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)
\(=\dfrac{a+b+c}{2}\)
\(\ge\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\dfrac{1}{2}\)
Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Bài 1 :Cho a,b,c dương thỏa mãn a+b+c=2
CMR \(\frac{bc}{\sqrt{3a^2+4}}+\frac{ca}{\sqrt{3b^2+4}}+\frac{ab}{\sqrt{3c^2+4}}\ge\frac{\sqrt{3}}{3}\)
Bài 2:Cho a,b,c>0. CMR
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)
\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)
\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)
\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)
Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)
\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)
Từ ( 1 ) và ( 2 ) có đpcm