Ta chứng minh: \(\sqrt{a+bc}\ge a+\sqrt{bc}\)
Thật vậy, ta có:
\(a+bc\ge a^2+2a\sqrt{bc}+bc\)
\(\Leftrightarrow a\ge a^2+2a\sqrt{bc}\)
\(\Leftrightarrow1\ge a+2\sqrt{bc}\)
\(\Leftrightarrow a+b+c\ge a+2\sqrt{bc}\)
\(\Leftrightarrow b+c\ge2\sqrt{bc}\)(Đúng theo Cauchy)
Tương tự: \(\sqrt{b+ca}\ge b+\sqrt{ca}\)
\(\sqrt{c+ab}\ge c+\sqrt{ab}\)
Cộng vế theo vế các BĐT vừa chứng minh ta được đpcm.
Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{3}\)