Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Văn Khang
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 6 2023 lúc 1:20

Xét ΔMAD và ΔMCA có

góc MAD=góc MCA

góc AMD chung

=>ΔMAD đồng dạng với ΔMCA

=>MA/MC=MD/MA

=>MA^2=MC*MD

Khuất Hỷ Nhi
Xem chi tiết
Nguyễn Thị Kiều Nhi
Xem chi tiết
Thái Thị Mỹ Duyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 3 2021 lúc 13:16

a) Xét tứ giác MAOB có

\(\widehat{OAM}\) và \(\widehat{OBM}\) là hai góc đối

\(\widehat{OAM}+\widehat{OBM}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: MAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Suy ra: M,A,O,B cùng thuộc một đường tròn(đpcm)

Nguyễn Phong
Xem chi tiết
le thi mai
Xem chi tiết
Trần Việt Hoàng
Xem chi tiết
Nguyễn Mai Hương
1 tháng 5 2020 lúc 20:27

a.Vì MA,MB là tiếp tuyến của (O)

→ˆMAO=ˆMBO=90o→MAO^=MBO^=90o

→M,A,O,B→M,A,O,B thuộc đường tròn đường kình OM

b.Vì MA,MBMA,MB là tiếp tuyến của (O)→MO⊥AB=I→MO⊥AB=I

→OA2=OI.OM→OA2=OI.OM

Vì OF⊥CM=EOF⊥CM=E

→ˆFAC=ˆFEC=90o→◊AFCE,◊MAEO→FAC^=FEC^=90o→◊AFCE,◊MAEO nội tiếp

→M,A,E,O,B→M,A,E,O,B cùng thuộc một đường tròn

→ˆFCA=ˆFEA=ˆFBO→FCA^=FEA^=FBO^

→FC→FC là tiếp tuyến của (O)

Khách vãng lai đã xóa
Lê Quỳnh Chi Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 12 2023 lúc 13:52

loading...

loading...

loading...

loading...

Lê Quỳnh Chi Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 12 2023 lúc 13:30

loading...

loading...

loading...

loading...

Lê Quỳnh Chi Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 12 2023 lúc 20:04

loading...

b: Xét (O) có

ΔCAB nội tiếp

CB là đường kính

Do đó: ΔCAB vuông tại A

=>CA\(\perp\)AB tại A

=>CA\(\perp\)BE tại A

Ta có: \(\widehat{OAE}=\widehat{OAC}+\widehat{EAC}=\widehat{OAC}+90^0\)

\(\widehat{MAC}=\widehat{MAO}+\widehat{OAC}=\widehat{OAC}+90^0\)

Do đó: \(\widehat{OAE}=\widehat{MAC}\)

Xét tứ giác CKAE có \(\widehat{CKE}=\widehat{CAE}=90^0\)

nên CKAE là tứ giác nội tiếp

=>\(\widehat{ACK}=\widehat{AEK}\)

=>\(\widehat{ACM}=\widehat{AEO}\)

Xét ΔAMC và ΔAOE có

\(\widehat{ACM}=\widehat{AEO}\)

\(\widehat{MAC}=\widehat{OAE}\)

Do đó: ΔAMC đồng dạng với ΔAOE

=>\(\dfrac{AM}{AO}=\dfrac{AC}{AE}\)

=>\(AM\cdot AE=AO\cdot AC\)

loading...

loading...