Xét ΔMAD và ΔMCA có
góc MAD=góc MCA
góc AMD chung
=>ΔMAD đồng dạng với ΔMCA
=>MA/MC=MD/MA
=>MA^2=MC*MD
Xét ΔMAD và ΔMCA có
góc MAD=góc MCA
góc AMD chung
=>ΔMAD đồng dạng với ΔMCA
=>MA/MC=MD/MA
=>MA^2=MC*MD
cho đường tròn (O) và điểm M nằm ngoài đường tròn .Kẻ 2 tiếp tuyến MA , MB với đường tròn (O)
từ điểm A kẻ đường thẳng song song với MB cắt đường tròn tại C ,đường thẳng MC cắt đường tròn tại D
CMR : đường thẳng AD đi qua trung điểm của MC
Từ một điểm M ở ngoài đường tròn (O) vẽ hai tiếp tuyến MA và MB với đường tròn (A,B là hai tiếp điểm). Qua A vẽ đường thẳng song song với MB và cắt đường tròn tại C ;đoạn thẳng MC cắt đường tròn tại D. Hai đường thẳng AD và MB cắt nhau tại E.
a) CMR: tứ giác MAOB nội tiếp
b) CMR: ∆MED ~ ∆AEM. Từ đó suy ra ME²=ED.AE
c) chứng minh E là trung điểm của đoạn MB
Cho điểm M nằm ngoài đường tròn (O,R) từ điểm M kẻ hai tiếp tuyến MA, MB vớ đường tròn dó ( A,B là các tiếp điểm). Qua A kẻ đường thẳng song song MB cắt đường tròn (o) tại điểm C. Nối MC cắt đường tròn (O) tại D. Tia AD cắt MB tại E. CMR
a) MAOB là tứ giác nội tiếp
b)EM=EB
c) Xác định vị trí điểm M để BD vuông góc MA
cho đường tròn tâm O bán kính R. Từ 1 điểm M ở ngoài đường tròn, kẻ hai tiếp tuyến MA và MB với đường tròn. Qua A kẻ đường thẳng song song với MO cắt đường tròn tại , đường thẳng ME cắt đường tròn tại F, đường thẳng AF cắt MO tại N, H là giao điểm của MO và AB. a) chứng minh: tứ giác MAOB nội tiếp đường tròn.
b)chứng minh: MA.AB=2MH.AO
Cho đường tròn (O) và 1 điểm M nằm ngoài đường tròn. từ M kẻ 2 tiếp tuyến MA, MB với đường tròn(O) (A,B là 2 tiếp điểm). Gọi I là giao điểm của OM với AB
a, CM: 4 điểm M,A,O,B cùng thuộc 1 đường tròn
b, CM: OM vuông góc với AB tại I
c, Từ B kẻ đường kính BC của đường tròn (O), đường thẳng MC cắt đường tròn (O) tại D (D khác C). CM: tam giác BDC vuông, từ đó suy ra MD.MC=MI.MO
d, Qua O kẻ đường thẳng vuông góc với MC tại E và cắt đường thẳng AB tại F. CM: FC là tiếp tuyến của đường tròn (O)
....Giải giúp mình ý d nha.... mình đag cần gấp
Từ một điểm M nằm ngoài đường tròn (O) vẽ hai tiếp tuyến MA, MB đến đường tròn (A, B là hai tiếp điểm). Qua A Vẽ đường thẳng song song với MB, cắt đường tròn tại E; đoạn thẳng ME cắt đường tròn tại F. Hai đường thẳng AF và MB cắt nhau tại I. Chứng minh tứ giác ABCD nội tiếp đường tròn.
Từ điểm M nằm ngoài đường tròn (O;R) kẻ các tiếp tuyến MA,MB của đường
tròn (O) (A và B là các tiếp điểm, OM > 2R). Gọi E là trung điểm của đoạn thẳng MB,
C là giao điểm của đường thẳng AE với đường tròn (O) và tia MC cắt đường tròn (O)
tại điểm thứ hai D.
a) Chứng minh: tử giác MAOB nội tiếp và gócMOB = gócADB;
b) Chứng minh: BF^2 = EC EA và AD ||MB.
c) Kẻ đường kính BI của đường tròn (O). Đường thẳng MI và đường thẳng AD
cắt nhau tại K . Chứng minh: KD = 3KA.
Cho điểm M nằm ngoài đường tròn (O ; R). Kẻ hai tiếp tuyến MA, MB với đường tròn ( A, B là tiếp điểm). QUa A kẻ đường thẳng song song với MB cắt (O) tại C. Nối MC cắt (O) tại D. Tia AD căst MB tại E.
a) Chứng minh: Tứ giác MAOB nội tiếp
b) Chứng minh: EM = EB
c) Xác định vị trí điểm M để BD vuông góc với MA