Đa thức 27+y3 được phân tích thành
Đa thức 64-32y+4y2 được ppân tích thành
Câu 1:(2 điểm) Phân tích thành nhân tử:
x2 + 4y2 + 4xy - 16
Câu 2:Phân tích đa thức thành nhân tử:
x3 + x2 + y3 + xy
Câu 1:
$x^2+4y^2+4xy-16=[x^2+(2y)^2+2.x.2y]-16$
$=(x+2y)^2-4^2=(x+2y-4)(x+2y+4)$
Câu 2:
$x^3+x^2+y^3+xy=(x^3+y^3)+(x^2+xy)$
$=(x+y)(x^2-xy+y^2)+x(x+y)=(x+y)(x^2-xy+y^2+x)$
Câu 1:
\(x^2+4y^2+4xy-16\)
\(=\left(x+2y\right)^2-16\)
\(=\left(x+2y+4\right)\left(x+2y-4\right)\)
Câu 2:
\(x^3+x^2+y^3+xy\)
\(=\left(x^3+y^3\right)\left(x^2+xy\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+x\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+x\right)\)
C1:x^2+4y^2+4xy-16
=[x^2+4xy+(2y)^2]-16
=(x+2y)^2-4^2
=(x+2y-4)(x+2y+4)
C2: x^3+x^2+y^3+xy
=(x^2+xy)+(x^3+y^3)
=x(x+y)+(x+y)(x^2-xy+y^2)
=(x+y)(x+x^2-xy+y^2)
bài này ra lâu r nhưng ngứa tay nên giải luôn=)))))
phân tích đa thức 9x2- 4y2 thành nhân tử ta được
\(9x^2-4y^2\)
\(=\left(3x\right)^2-\left(2y\right)^2\)
\(=\left(3x-2y\right)\left(3x+2y\right)\)
Phân tích đa thức 8 x 3 + 12 x 2 y + 6 x y 2 + y 3 thành nhân tử ta được
A. ( x + 2 y ) 3
B. ( 2 x + y ) 3
C. ( 2 x – y ) 3
D. ( 8 x + y ) 3
Ta có
8 x 3 + 12 x 2 y + 6 x y 2 + y 3 = ( 2 x ) 3 + 3 . ( 2 x ) 2 y + 3 . 2 x . y 2 + y 3 = ( 2 x + y ) 3
Đáp án cần chọn là: B
Câu 56:Đa thức x(x – 7) + (7 – x)2 được phân tích thành nhân tử là:
A. (x - 7)(2x + 7) B. (x - 7)(2x - 7) C. 7(x - 7) D. (x - 7)(x + 7)
Câu 57:Phân tích đa thức x2 – 16 – 4xy + 4y2 thành nhân tử ta được:
A. (x – 2y + 4)(x + 2y + 4) B. (x – 2y + 4)(x – 2y – 4)
C. (x – 2y + 4)(x + 2y + 4) D. Không phân tích được
Câu 58:Đa thức (x – 4)2 + (x – 4) được phân tích thành nhân tử là:
A. (x + 4)(x – 4) B. (x – 4)(x – 3) C. (x + 4)(x + 3) D. (x – 4)(x – 5)
Phân tích các đa thức sau thành nhân tử:
e/ x2−4y2−2x+4yx2−4y2−2x+4y
f/ x2−25−2xy+y2x2−25−2xy+y2
g/ x3−2x2+x−xy2x3−2x2+x−xy2
h/ x3−4x2−12x+27
h: \(=\left(x+3\right)\cdot\left(x^2-3x+9\right)-4x\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-7x+9\right)\)
phân tích đa thức thành nhân tử 8x^2-16x 8-32y^2
Sửa đề: \(8x^2-16x+8-32y^2\)
\(=8\left(x^2-2x+1-4y^2\right)\)
\(=8\left[\left(x^2-2x+1\right)-4y^2\right]\)
\(=8\left[\left(x-1\right)^2-\left(2y\right)^2\right]\)
\(=8\left(x-1-2y\right)\left(x-1+2y\right)\)
Phân tích đa thức thành nhân tử:
1/4x2y+5x3-x2y2
5x(x-1)-3y(1-x)
4x2-25
6x-9-x2
X2+4y2+4xy
1/64-27x3
X3-6x2=12x-8
X2-x-y2-y
5x-5y+ax-ay
1.
$4x^2y+5x^3-x^2y^2=x^2(4y+5x-y^2)$
2.
$5x(x-1)-3y(1-x)=5x(x-1)+3y(x-1)=(x-1)(5x+3y)$
3.
$4x^2-25=(2x)^2-5^2=(2x-5)(2x+5)$
4.
$6x-9-x^2=-(x^2-6x+9)=-(x-3)^2$
5.
$x^2+4y^2+4xy=x^2+2.x.2y+(2y)^2=(x+2y)^2$
6.
$\frac{1}{64}-27x^3=(\frac{1}{4})^3-(3x)^3$
$=(\frac{1}{4}-3x)(\frac{1}{16}+\frac{3x}{4}+9x^2)$
7.
$x^3-6x^2+12x-8=x^3-3.x^2.2+3.x.2^2-2^3$
$=(x-2)^3$
8.
$x^2-x-y^2-y=(x^2-y^2)-(x+y)=(x-y)(x+y)-(x+y)$
$=(x+y)(x-y-1)$
9.
$5x-5y+ax-ay=5(x-y)+a(x-y)$
$=(x-y)(5+a)$
Phân tích đa thức thành nhân tử:
a) 50x5-8x3
b) x4-5x2-4y2+10y
c) 36a2-b2+12a+1
d) x3+y3-xy2-x2y
e) 4x2+4x-3
f) 9x4+16x2-4
g) -6x2+5xy+4y2
h)(x2+4x)2+8(x2+4x)+15
i) 9x4+5x2+1
a: \(50x^5-8x^3\)
\(=2x^3\left(25x^2-4\right)\)
\(=2x^3\left(5x-2\right)\left(5x+2\right)\)
b: \(x^4-5x^2-4y^2+10y\)
\(=\left(x^2-2y\right)\left(x^2+2y\right)-5\left(x^2-2y\right)\)
\(=\left(x^2-2y\right)\left(x^2+2y-5\right)\)
c: \(36a^2+12a+1-b^2\)
\(=\left(6a+1\right)^2-b^2\)
\(=\left(6a+1-b\right)\left(6a+1+b\right)\)
d: \(x^3+y^3-xy^2-x^2y\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-2xy+y^2\right)\)
\(=\left(x+y\right)\cdot\left(x-y\right)^2\)
e: Ta có: \(4x^2+4x-3\)
\(=4x^2+6x-2x-3\)
\(=2x\left(2x+3\right)-\left(2x+3\right)\)
\(=\left(2x+3\right)\left(2x-1\right)\)
f: Ta có: \(9x^4+16x^2-4\)
\(=9x^4+18x^2-2x^2-4\)
\(=9x^2\left(x^2+2\right)-2\left(x^2+2\right)\)
\(=\left(x^2+2\right)\left(9x^2-2\right)\)
g: Ta có: \(-6x^2+5xy+4y^2\)
\(=-6x^2+8xy-3xy+4y^2\)
\(=-2x\left(3x-4y\right)-y\left(3x-4y\right)\)
\(=\left(3x-4y\right)\left(-2x-y\right)\)
h: Ta có: \(\left(x^2+4x\right)^2+8\left(x^2+4x\right)+15\)
\(=\left(x^2+4x\right)^2+3\left(x^2+4x\right)+5\left(x^2+4x\right)+15\)
\(=\left(x^2+4x+3\right)\cdot\left(x^2+4x+5\right)\)
\(=\left(x+1\right)\left(x+3\right)\left(x^2+4x+5\right)\)
Phân tích đa thức sau thành nhân tử: x4 +4y2
Sửa đề: x^4+4y^4
=x^4+4x^2y^2+4y^4-4x^2y^2
=(x^2+2y^2)^2-4x^2y^2
=(x^2-2xy+2y^2)(x^2+2xy+2y^2)