Tìm hình dạng tam giác ABC biết \(a^2+b^2+c^2=4S\sqrt{3}\)
sin \(\dfrac{A}{2}\)=\(\sqrt{\dfrac{b-c}{2b}}\) nhận dạng tam giác ABC biết
\(sin^2\dfrac{A}{2}=\dfrac{b-c}{2b}\)
\(\Leftrightarrow\dfrac{1-cosA}{2}=\dfrac{b-c}{2b}\)
\(\Leftrightarrow1-\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{b-c}{b}=1-\dfrac{c}{b}\)
\(\Leftrightarrow b^2+c^2-a^2=2c^2\)
\(\Leftrightarrow a^2+c^2=b^2\)
Tam giác vuông tại B
Cho tam giác ABC có diện tích là S. BC = a, AC = b, AB = c. G là trọng tâm tam giác. Chứng minh rằng:
a/ \(cotA=\dfrac{b^2+c^2-a^2}{4S}\)
b/ \(cotA+cotB+cotC=\dfrac{a^2+b^2+c^2}{4S}\)
c/ \(GA^2+GB^2+GC^2=\dfrac{1}{3}\left(a^2+b^2+c^2\right)\)
d/ \(b^2-c^2=a\left(b.cosC-c.cosB\right)\)
a)Có \(b^2+c^2-a^2=cosA.2bc\)
\(S=\dfrac{1}{2}bc.sinA\)\(\Rightarrow4S=2bc.sinA\)
\(\Rightarrow\dfrac{b^2+c^2-a^2}{4S}=\dfrac{cosA.2bc}{2bc.sinA}=cotA\) (dpcm)
b) CM tương tự câu a \(\Rightarrow\dfrac{a^2+c^2-b^2}{4S}=\dfrac{cosB.2ac}{2ac.sinB}=cotB\); \(\dfrac{a^2+b^2-c^2}{4S}=\dfrac{cosC.2ab}{2ab.sinC}=cotC\)
Cộng vế với vế \(\Rightarrow cotA+cotB+cotC=\dfrac{b^2+c^2-a^2}{4S}+\dfrac{a^2+c^2-b^2}{4S}+\dfrac{a^2+b^2-c^2}{4S}\)\(=\dfrac{a^2+b^2+c^2}{4S}\) (dpcm)
c) Gọi ma;mb;mc là độ dài các đường trung tuyến kẻ từ đỉnh A;B;C của tam giác ABC
Có \(GA^2+GB^2+GC^2=\dfrac{4}{9}\left(m_a^2+m_b^2+m_b^2\right)\)\(=\dfrac{4}{9}\left[\dfrac{2\left(b^2+c^2\right)-a^2}{4}+\dfrac{2\left(a^2+c^2\right)-b^2}{4}+\dfrac{2\left(b^2+c^2\right)-a^2}{4}\right]\)
\(=\dfrac{4}{9}.\dfrac{3\left(a^2+b^2+c^2\right)}{4}=\dfrac{a^2+b^2+c^2}{3}\) (đpcm)
d) Có \(a\left(b.cosC-c.cosB\right)=ab.cosC-ac.cosB\)
\(=\dfrac{a^2+b^2-c^2}{2}-\dfrac{a^2+c^2-b^2}{2}\)
\(=b^2-c^2\) (dpcm)
Cho tam giác ABC biết a=2\(\sqrt{3}\), b=2\(\sqrt{2}\), c=\(\sqrt{6}\) -\(\sqrt{2}\) .Tính góc lớn nhất của tam giác.
Trong mặt phẳng tọa độ Oxy, Cho tam giác ABC biết A(–2 ; 2), B(2 ; – 1), C(5 ; 3 ) và điểm E(–1; 0 ). a) Chứng minh rằng tam giác ABC cân.Tính diện tích tam giác ABC. b) Tìm tọa độ các điểm M(m; 2m-5) sao cho MO=\(\sqrt{5}AE\) ( biết O là gốc tọa độ và m lớn hơn 0 ).
a: \(AB=\sqrt{\left(2+2\right)^2+\left(-1-2\right)^2}=5\)
\(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
Do đó: ΔABC cân tại B
Bài 1: Cho tam giác ABC vuông tại A.CMR: \(m^2_b +m^2_c =5m^2_a\)
Bài 2: Cho tam giác ABC thỏa mãn \(\frac{a^3+b^3-c^3}{a+b-c}=c^2\). Tìm số đo của \(\widehat{C}\)
Bài 3: Nhận dạng tam giác ABC nếu \(\frac{a^3+c^3-b^3}{a+c-b}=b^2\) và \(sinA.sinC=\frac{3}{4}\)
1.
Áp dụng công thức trung tuyến:
\(m_b^2+m_c^2=\dfrac{2a^2+2c^2-b^2}{4}+\dfrac{2a^2+2b^2-c^2}{4}\)
\(=\dfrac{4a^2+b^2+c^2}{4}\)
\(=\dfrac{9a^2+b^2+c^2-5a^2}{4}\)
\(=\dfrac{9\left(b^2+c^2\right)+b^2+c^2-5a^2}{4}\)
\(=5\left(\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}\right)=5m_a\)
cho tam giác ABC . Chứng minh rằng : a) cot A = b2 + c2 - a2 / 4S ( S là diện tích tam giác ABC ) ; b) cot A + cot B + cot C = a2 + b2 + c2 / 4S
/ nghĩa là phân số
Nhận dạng tam giác ABC biết:
1) S = \(\dfrac{1}{6}\) (c.ha + b.hc + a.hc)
2) 2(a2 + b2 + c2) = a(b2 + c2) + b(c2 + a2) + c(a2 + b2)
3) ha + hb + hc =9r
4) \(\dfrac{sinA}{1}=\dfrac{sinB}{\sqrt{3}}=\dfrac{sinC}{2}\)
1.
Sửa đề: \(S=\dfrac{1}{6}\left(ch_a+bh_c+ah_b\right)\)
\(a.h_a=b.h_b=c.h_c=2S\Rightarrow\left\{{}\begin{matrix}h_a=\dfrac{2S}{a}\\h_b=\dfrac{2S}{b}\\h_c=\dfrac{2S}{c}\end{matrix}\right.\)
\(\Rightarrow6S=\dfrac{2Sc}{a}+\dfrac{2Sb}{c}+\dfrac{2Sa}{b}\)
\(\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=3\)
Mặt khác theo AM-GM: \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge3\sqrt[3]{\dfrac{abc}{abc}}=3\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)
\(\Leftrightarrow\) Tam giác đã cho đều
2.
Bạn coi lại đề, biểu thức câu này rất kì quặc (2 vế không đồng bậc)
Ở vế trái là \(2\left(a^2+b^2+c^2\right)\) hay \(2\left(a^3+b^3+c^3\right)\) nhỉ?
3.
Theo câu a, ta có:
\(VT=\dfrac{2S}{a}+\dfrac{2S}{b}+\dfrac{2S}{c}\ge\dfrac{18S}{a+b+c}=\dfrac{18.pr}{a+b+c}=9r\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)
Hay tam giác đã cho đều
4.
Theo định lý hàm sin: \(\left\{{}\begin{matrix}sinA=\dfrac{a}{2R}\\sinB=\dfrac{b}{2R}\\sinC=\dfrac{c}{2R}\end{matrix}\right.\)
\(\Rightarrow\dfrac{a}{2R}=\dfrac{b}{2\sqrt{3}R}=\dfrac{c}{4R}\)
\(\Leftrightarrow a=\dfrac{b}{\sqrt{3}}=\dfrac{c}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{c}{2}\\b=\dfrac{c\sqrt{3}}{2}\end{matrix}\right.\)
\(\Rightarrow a^2+b^2=\dfrac{c^2}{4}+\dfrac{3c^2}{4}=c^2\)
\(\Rightarrow\Delta ABC\) vuông tại C theo Pitago đảo
Cho tam giác abc có bc=a ca=b ab=c (b khác c) diện tích s biết b^2+c^2>=2a^2 1) chứng minh 4S/(tanA)>=a^2 2) gọi o g lần lượt là tâm đg tròn ngoại tiếp và trọng tâm tam giác abc M là trung điểm bc chứng minh góc MGO không nhọn
Cho tam giác ABC, độ dài 3 cạnh tam giác lần lượt là a,b,c. Gọi G là trọng tâm và R là bán kính đường tròn ngoại tiếp.
a. \(GA^2+GB^2+GC^2=\dfrac{a^2+b^2+c^2}{3}\)
b. \(cotA+cotB+cotC=\dfrac{a^2+b^2+c^2}{4S}\)
a, 3 đường trung tuyến cách nhau tại trọng tâm, khoảng cách từ trọng tâm đến đỉnh bằng \(\dfrac{2}{3}\) độ dài trung tuyến đi qua đỉnh đó
Từ định lí trên ta có \(\left\{{}\begin{matrix}m_a=\dfrac{2}{3}GA\\m_b=\dfrac{2}{3}GB\\m_c=\dfrac{2}{3}GC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m_a^2=\dfrac{4}{9}GA^2\\m_b^2=\dfrac{4}{9}GB^2\\m_c^2=\dfrac{4}{9}GB^2\end{matrix}\right.\)
Đặt D = GA2 + GB2 + GC2
⇒ D = ma2 + mb2 + mc2
⇒ D = \(\dfrac{2\left(a^2+b^2\right)-c^2+2\left(b^2+c^2\right)-a^2+2\left(a^2+c^2\right)-b^2}{4}\)
⇒ D = \(\dfrac{a^2+b^2+c^2}{3}\)
b, cotA = \(\dfrac{cosA}{sinA}=\dfrac{\dfrac{b^2+c^2-a^2}{2bc}}{\dfrac{a}{2R}}=R.\dfrac{b^2+c^2-a^2}{abc}\)
Tương tự ta có
cotB = \(R.\dfrac{a^2+c^2-b^2}{abc}\)
cotC = \(R.\dfrac{a^2+b^2-c^2}{abc}\)
Vậy cotA + cotB + cotC = \(R.\dfrac{a^2+b^2+c^2}{abc}\) (1)
Theo công thức tính diện tích
S = \(\dfrac{abc}{4R}\) ⇒ abc = 4 . S . R
Thế vào (1) ta có
cotA + cotB + cotC = \(R.\dfrac{a^2+b^2+c^2}{4.S.R}=\dfrac{a^2+b^2+c^2}{4S}\)
a, \(\overrightarrow{GA}=-\dfrac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
\(\Rightarrow GA^2=\dfrac{1}{9}\left(AB^2+AC^2+2AB.AC.cosA\right)\)
\(=\dfrac{1}{9}\left(c^2+b^2+2bc.cosA\right)\)
\(=\dfrac{1}{9}\left(c^2+b^2+b^2+c^2-a^2\right)=\dfrac{2b^2+2c^2-a^2}{9}\)
Tương tự \(GB^2=\dfrac{2a^2+2c^2-b^2}{9}\); \(GC^2=\dfrac{2a^2+2b^2-c^2}{9}\)
\(\Rightarrow GA^2+GB^2+GC^2=\dfrac{a^2+b^2+c^2}{3}\)
b, \(cotA+cotB+cotC=\dfrac{cosA}{sinA}+\dfrac{cosB}{sinB}+\dfrac{cosC}{sinC}\)
\(=\dfrac{b^2+c^2-a^2}{2bcsinA}+\dfrac{a^2+c^2-b^2}{2acsinB}+\dfrac{a^2+b^2-c^2}{2absinC}\)
\(=\dfrac{b^2+c^2-a^2}{2bcsinA}+\dfrac{a^2+c^2-b^2}{2ac.\dfrac{b}{a}sinA}+\dfrac{a^2+b^2-c^2}{2ab.\dfrac{c}{a}sinA}\)
\(=\dfrac{a}{2sinA}\left(\dfrac{b^2+c^2-a^2}{abc}+\dfrac{a^2+c^2-b^2}{abc}+\dfrac{a^2+b^2-c^2}{abc}\right)\)
\(=\dfrac{a^2+b^2+c^2}{2bcsinA}=\dfrac{a^2+b^2+c^2}{4.S}\)