Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Khánh Huy
Xem chi tiết
Thu Nguyễn Nguyệt
Xem chi tiết
Phương Vũ
Xem chi tiết
Nguyễn Huyền Trâm
29 tháng 5 2020 lúc 22:04

Xét Δ ABM và Δ ADN có:

BM = DN (gt)

\(\widehat{ABC}\)= \(\widehat{ADN}=90^0\) ( góc ADN kề bù với góc ADE ( E∈DC)

AB = AD ( ABCD là hình vuông)

=> Δ ABM = Δ ADN ( c-g-c)

=> AM = AN ( hai cạnh tương ứng )

=> Δ NAM cân tại A

Xét Δ ANH và Δ AMH có:

AM = AN (cmt)

AH cạnh chung

\(\widehat{AHN}=\widehat{AHM}=90^0\)

=> Δ AHN = ΔAHM ( cạnh huyền - cạnh góc vuông)

=> HN = HM ( hai cạnh tương ứng )

Xét Δ cân NAM có:

AH vừa là đường cao vừa là đường trung tuyến

=> ΔNAM vuông cân tại A.

22 - Đỗ Nhật Minh - 6A17
Xem chi tiết
Kiều Vũ Linh
24 tháng 10 2023 lúc 9:28

 

a) Do ABCD là hình vuông (gt)

\(\Rightarrow AB=AD\)

\(\widehat{ABM}=\widehat{ADN}=90^0\)

Xét hai tam giác vuông: \(\Delta ABM\) và \(\Delta ADN\) có:

\(AB=AD\left(cmt\right)\)

\(BM=DN\left(gt\right)\)

\(\Rightarrow\Delta ABM=\Delta ADN\) (hai cạnh góc vuông)

\(\Rightarrow AM=AN\) (hai cạnh tương ứng)

\(\widehat{BAM}=\widehat{DAN}\) (hai góc tương ứng)

Ta có:

\(\widehat{BAM}+\widehat{DAM}=90^0\)

\(\Rightarrow\widehat{DAN}+\widehat{DAM}=90^0\)

\(\Rightarrow\widehat{MAN}=90^0\)

\(\Delta AMN\) có:

\(AM=AN\left(cmt\right)\)

\(\Rightarrow\Delta AMN\) cân tại A

Mà \(\widehat{MAN}=90^0\left(cmt\right)\)

\(\Rightarrow\Delta AMN\) vuông cân tại A

b) Do \(\Delta AMN\) cân tại A

E là trung điểm của MN

\(\Rightarrow AE\) là đường trung tuyến, cũng là đường cao của \(\Delta AMN\)

\(\Rightarrow AE\perp MN\)

\(\Rightarrow EF\perp MN\)

Xét hai tam giác vuông: \(\Delta FEM\) và \(\Delta FEN\) có:

\(EM=EN\left(gt\right)\)

\(EF\) là cạnh chung

\(\Rightarrow\Delta FEM=\Delta FEN\) (hai cạnh góc vuông)

\(\Rightarrow FM=FN\) (hai cạnh tương ứng)

Xét \(\Delta FAN\) và \(\Delta FAM\) có:

\(FA\) là cạnh chung

\(FN=FM\left(cmt\right)\)

\(AN=AM\left(cmt\right)\)

\(\Rightarrow\Delta FAN=\Delta FAM\left(c-c-c\right)\)

Huytd
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 7 2023 lúc 19:32

a: Xét ΔAND và ΔABM có

góc A chung

AN=DM

AB=AD

=>ΔAND=ΔABM

=>AN=AM

góc NAD=góc BAM

=>góc NAD+góc DAM=góc DAM+góc BAM=90 độ

=>góc NAM=90 độ

=>ΔNAM vuông cân tại A

b: Xét ΔABM và ΔPDA có

góc B=góc D

góc BAM=góc APD

=>ΔABM đồng dạng với ΔPDA

=>AB/BM=PD/AD

=>AB*AD=BM*PD=BC^2
c: Xét ΔAIH và ΔAQD có

góc A chung

góc H=góc D

=>ΔAIH đồng dạng với ΔAQD

=>AI*AD=AH*AQ

Chi Thảo
Xem chi tiết
Nguyễn Trung Kiên
Xem chi tiết
phong
Xem chi tiết
phong
28 tháng 10 2020 lúc 16:10

Mn giải giúp e vs ((

Khách vãng lai đã xóa
Minz Ank
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 4 2023 lúc 7:42

Đặt cạnh hình vuông là a, ta có \(BD=\sqrt{a^2+a^2}=a\sqrt{2}\)

\(\Rightarrow BO=\dfrac{1}{2}BD=\dfrac{a\sqrt{2}}{2}\Rightarrow BO.BD=a^2\)

Xét 2 tam giác vuông AED và MAB có:

\(\left\{{}\begin{matrix}\widehat{ADE}=\widehat{MBA}=90^0\\\widehat{AED}=\widehat{MAB}\left(slt\right)\end{matrix}\right.\) \(\Rightarrow\Delta AED\sim\Delta MAB\left(g.g\right)\)

\(\Rightarrow\dfrac{AD}{BM}=\dfrac{ED}{AB}\Rightarrow BM.ED=AD.AB=a^2\)

\(\Rightarrow BM.ED=BO.BD\)

Mà \(ED=BF\) (do \(BC=CD\) và \(CE=CF\))

\(\Rightarrow BM.BF=BO.BD\Rightarrow\dfrac{BM}{BD}=\dfrac{BO}{BF}\)

Xét hai tam giác BOM và BFD có:

\(\left\{{}\begin{matrix}\dfrac{BM}{BD}=\dfrac{BO}{BF}\\\widehat{OBM}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta BOM\sim\Delta BFD\left(c.g.c\right)\)

Nguyễn Việt Lâm
20 tháng 4 2023 lúc 7:43

loading...