Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Long
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 10 2023 lúc 13:42

a: Xét ΔABH vuông tại H có HD là đường cao

nên \(BD\cdot BA=BH^2\)

=>\(BA\cdot3,6=6^2=36\)

=>BA=10(cm)

AD+DB=BA

=>AD+3,6=10

=>AD=6,4(cm)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HA=\sqrt{10^2-6^2}=8\left(cm\right)\)

Xét ΔAHB vuông tại H có HD là đường cao

nên \(HD\cdot AB=HA\cdot HB\)

=>\(HD\cdot10=6\cdot8=48\)

=>HD=4,8(cm)

b: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

=>\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Xét ΔADE và ΔACB có

AD/AC=AE/AB

\(\widehat{DAE}\) chung

Do đó: ΔADE đồng dạng với ΔACB

Mai Nguyễn thanh
Xem chi tiết
Akai Haruma
18 tháng 11 2021 lúc 23:16

Lời giải:
a. Áp dụng hệ thức lượng trong tam giác vuông:

$AM.AB=AH^2$
$AN.AC=AH^2$

$\Rightarrow AM.AB=AN.AC$ (đpcm)

b.

Vì $AM.AB=AN.AC\Rightarrow \frac{AM}{AN}=\frac{AC}{AB}$

Xét tam giác $AMN$ và $ACB$ có:

$\widehat{A}$ chung

$\frac{AM}{AN}=\frac{AC}{AB}$ (cmt)

$\Rightarrow \triangle AMN\sim \triangle ACB$ (c.g.c)

Ta có đpcm.

Akai Haruma
18 tháng 11 2021 lúc 23:17

Hình vẽ:

Tuấn Nguyễn
Xem chi tiết
Nguyễn Đức Thắng
20 tháng 9 2015 lúc 11:03

Xét tứ giác AMHN có góc ANM = góc AHM (1) (2 góc trong tứ giác nội tiếp cùng nhìn xuống cạnh AM)

Mà góc AHM = góc B = 90o – BHM (2)

(1)(2) => góc ANM = góc B

Xét tam giác ANM và tam giác ABC có:

Góc A chung

Góc ANM = góc B

ð       tam giác ANM đồng dạng tam giác ABC (g – g)

ð       AN/AB = AM/AC

ð       AN.AC = AB.AM

Trần Hải Việt シ)
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 2 2023 lúc 14:33

Xét ΔAHB vuông tại H có HE là đường cao

nên AE*AB=AH^2

Xét ΔAHC vuông tại H có HD là đường cao

nên AD*AC=AH^2

=>AE*AB=AD*AC
=>AE/AC=AD/AB

mà góc DAE chung

nên ΔAED đồng dạng với ΔACB

hoangduy2408
Xem chi tiết
Khai Nguyen Duc
Xem chi tiết
Khai Nguyen Duc
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 9 2021 lúc 13:34

Áp dụng hệ thức lượng trong tam giác vuông ABH với đường cao BM:

\(AH^2=AM.AB\) (1)

Áp dụng hệ thức lượng trong tam giác vuông ACH với đường cao CN:

\(AH^2=AN.AC\) (2)

(1);(2)\(\Rightarrow AM.AB=AN.AC\)

Nguyễn Việt Lâm
19 tháng 9 2021 lúc 13:34

undefined

Phuc_MiLO
Xem chi tiết
Nguyễn Huy Tú
12 tháng 3 2022 lúc 13:09

a, Xét tứ giác ADHE ta có 

^ADH + ^AEH = 1800

mà 2 góc này đối 

Vậy tứ giác ADHE là tứ giác nt 1 đường tròn 

b, Ta có \(AH^2=AD.AB;AH^2=AE.AC\) ( hệ thức lượng ) 

\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)Xét tam giác ADE và tam giác ACB 

có ^A _ chung ; AD/AC = AE/AB 

Vậy tam giác ADE ~ tam giác ACB (g.g) 

=> ^ADE = ^ACB 

mà ^ADE là góc ngoài đỉnh D 

Vậy tứ giác BDEC nt 1 đường tròn

Võ Tuấn Nguyên
Xem chi tiết
meme
20 tháng 8 2023 lúc 9:32

Để giải bài toán, ta sẽ sử dụng các định lý trong hình học tam giác. a/ Để tính HB và HC, ta cần tìm độ dài đường cao AH trước. Với thông tin AH.AC = 3.5 và AC = 15cm, ta có thể tính được AH: AH = (AH.AC)/AC = (3.5)/(15) = 0.2333 cm Tiếp theo, ta xét tam giác ABC với tam giác ABC. góc B và đường cao AH. Áp dụng định lý Pythagoras, ta có công thức: AB^2 = AH^2 + BH^2 Với độ dài AB = 15cm, ta có: 15^2 = 0,2333^2 + BH^2 225 = 0,0544 + BH^2 BH^2 = 224,9456 BH ≈ 14,998 cm Tương tự, ta có: HC ≈ 0,2333 cm Vậy HB ≈ 14,998 cm và HC ≈ 0,2333 cm. b/ Để chứng minh AH^3 = BC.BE.CF, ta sẽ sử dụng các tỷ lệ trong tam giác tương đồng. Kiểm định tam giác AHB và tam giác AFC, ta có: AH/AF = HB/FC 0.2333/AF = 14.998/(15 - FC) Tương tự, xét tam giác AHC và tam giác AEB, ta có: AH/AE = HC/EB 0.2333/AE = 0.2333/(15 - EB ) Từ hai tỷ lệ trên, ta có: AF/(15 - FC) = AE/(15 - EB) Nhân cả hai quan sát với (15 - FC)(15 - EB), ta có: AF(15 - EB) = AE(15 - FC) Vậy ta có BC.BE.CF = AF(15 - EB) = AE(15 - FC) = AH^2. Do đó, AH^3 = BC.BE.CF.

Nguyễn Lê Phước Thịnh
20 tháng 8 2023 lúc 11:06

a: Sửa đề: AH/AC=3/5

Xét ΔAHC vuông tại H có sin C=AH/AC=3/5

Xét ΔABC vuông tại A có sin C=AB/BC

=>15/BC=3/5

=>BC=25(cm)

=>\(AC=\sqrt{25^2-15^2}=20\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên BH*BC=BA^2; CH*CB=CA^2

=>BH=15^2/25=9cm; CH=20^2/25=16cm

b: BC*BE*CF

=BC*BH^2/BA*CH^2/CA

=AH^4/AH

=AH^3