3x^4-12y^4
1)3x^2-9 2)1/2x^2-2y^2 3)3x^2-12y^2 4)1/3x^2y^2-3x^2
1) \(3x^2-9=3\left(x^2-3\right)\)
2) \(\dfrac{1}{2}x^2-2y^2\)
\(=\dfrac{1}{2}\left(x^2-4y^2\right)\)
\(=\dfrac{1}{2}\left(x-2y\right)\left(x +2y\right)\)
3) \(3x^2-12y^2\)
\(=3\left(x^2-4y^2\right)\)
\(=3\left(x-2y\right)\left(x+2y\right)\)
4) \(\dfrac{1}{3}x^2y^2-3x^2\)
\(=\dfrac{1}{3}x^2\left(y^2-9\right)\)
\(=\dfrac{1}{3}x^2\left(y-3\right)\left(y+3\right)\)
#Toru
2y^3-3x^4-4x^3-12y^2+2x^2+24y+8x+158039=0
a. x^4+5x^3-8x-40
b .3x^2-6x-12y^2+3
*phân tích thành nhân tử*
\(a,x^4+5x^3-8x-40=x^3\left(x+5\right)-8\left(x+5\right)\\ =\left(x^3-8\right)\left(x+5\right)=\left(x-2\right)\left(x^2+2x+4\right)\left(x+5\right)\\ b,3x^2-6x-12y^2+3=3\left(x^2-2x-4y^2+1\right)\\ =3\left[\left(x-1\right)^2-4y^2\right]=3\left(x-2y-1\right)\left(x+2y-1\right)\)
phan tich da thuc thanh nhan tu : a) 3x^2 - 22xy + 4x + 8y + 7x^2 + 1 ; b) 12x^2 + 5x - 12y^2 + 12y - 10xy - 3 ; c)x^4 + 6x^3 + 11x^2 + 6x + 1
Giải hệ pt
2x^3 +4y +4= (x-2).căn(y-1)
x^3 - 3x^2 + 6x = 8y^3 +12y^2 + 12y +8
Giải hệ \(\left\{{}\begin{matrix}x^3-y^3+3x-12y+7=3x^2-6y^2\\\sqrt{x+2}+\sqrt{4-y}=x^3+y^3-4x-2y\end{matrix}\right.\)
\(ĐK:x\ge-2;y\le4\)
\(PT\left(1\right)\Leftrightarrow\left(x^3-3x^2+3x-1\right)-\left(y^3-6y^2+12y-8\right)=0\\ \Leftrightarrow\left(x-1\right)^3-\left(y-2\right)^3=0\\ \Leftrightarrow\left(x-y+1\right)\left[\left(x-1\right)^2+\left(x-1\right)\left(y-2\right)+\left(y-2\right)^2\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}x-y+1=0\\x^2-4x+xy+y^2-5y+7=0\left(1\right)\end{matrix}\right.\\ \left(1\right)\Leftrightarrow\left(x^2+\dfrac{1}{4}y^2+4+xy-2y-4x\right)+\dfrac{3}{4}y^2-3y+3=0\\ \Leftrightarrow\left(x+\dfrac{1}{2}y-2\right)^2+\dfrac{3}{4}\left(y^2-4y+4\right)=0\\ \Leftrightarrow\left(x+\dfrac{1}{2}y-2\right)^2+\dfrac{3}{4}\left(y-2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Thay \(x=1;y=2\) vào PT(2) ta thấy ko thỏa mãn
Với \(x-y+1=0\Leftrightarrow y=x+1\), thay vào PT(2)
\(\Leftrightarrow\sqrt{x+2}+\sqrt{3-x}=x^3+x^2-4x-1\left(-2\le x\le3\right)\\ \Leftrightarrow\sqrt{x+2}+\sqrt{3-x}-3=x^3+x^2-4x-4\\ \Leftrightarrow\dfrac{2\sqrt{\left(x+2\right)\left(3-x\right)}-4}{\sqrt{x+2}+\sqrt{3-x}+3}=\left(x+1\right)\left(x-2\right)\left(x+2\right)\\ \Leftrightarrow\dfrac{2\left[\left(x+2\right)\left(3-x\right)-4\right]}{\left(\sqrt{x+2}+\sqrt{3-x}+3\right)\left(\sqrt{\left(x+2\right)\left(3-x\right)}+2\right)}=\left(x^2-x-2\right)\left(x+2\right)\\ \Leftrightarrow\left(x^2-x-2\right)\left(x+2\right)+\dfrac{2\left(x^2-x-2\right)}{\left(\sqrt{x+2}+\sqrt{3-x}+3\right)\left(\sqrt{\left(x+2\right)\left(3-x\right)}+2\right)}=0\)
\(\Leftrightarrow\left(x^2-x-2\right)\left[x+2+\dfrac{1}{\left(\sqrt{x+2}+\sqrt{3-x}+3\right)\left(\sqrt{\left(x+2\right)\left(3-x\right)}+2\right)}\right]=0\)
Với \(x\ge-2\Leftrightarrow x^2-x-2=0\Leftrightarrow\left[{}\begin{matrix}x=-1\Rightarrow y=0\\x=2\Rightarrow x=3\end{matrix}\right.\left(tm\right)\)
Vậy HPT có nghiệm \(\left(x;y\right)\in\left\{\left(-1;0\right);\left(2;3\right)\right\}\)
Tìm đa thức P và đa thức Q biết
a. P + (3x^2 - 4 + 5x) = x^2 - 4x
b. Q - 14y^4 + 6y^5 - 3 = -12y^5 + y^4 -1
a)
P = (x2 -4x )- (3x2 -4+5x)
P = x2 - 4x - 3x2 +4 - 5x
P= (x2 - 3x2 ) + (-4x - 5x ) + 4
P= -2x2 - 9x + 4
b)
Q= (-12y5 + y4 -1 )+ ( 14y4 + 6y5 -3 )
Q= -12y5 + y4 - 1 + 14y4 + 6y5 - 3
Q= ( -12y5 + 6y5 )+ ( y4 + 14y4 ) + (-1-3)
Q= -6y5 + 15y4 -4
chúc bn hok tốt !~##
Phân tích đa thức thành nhân tử A. 4x^2-12xy+9y^2-8x+12y B. 3x^2+20x-7 C. (3x-1)^4+2(9y^2-6x+1)+1 D. 2x^3-3x^2+2x-1
a: =(2x-3y)^2-4(2x-3y)
=(2x-3y)(2x-3y-4)
b: =3x^2+21x-x-7
=(x+7)(3x-1)
c: =(3x-1)^4+2(3x-1)^2+1
=[(3x-1)^2+1]^2
d: =2x^3-2x^2-x^2+x+x-1
=(x-1)(2x^2-x+1)