Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vũ tiền châu
Xem chi tiết
Lê Phương Thảo
Xem chi tiết
ma tốc độ
21 tháng 1 2016 lúc 17:41

bài lớp 10 bất đẳng thức mấy chú k hiểu là đúng r -______-''

Lê Phương Thảo
21 tháng 1 2016 lúc 17:35

hc o nha cho đó mk dg hc chi vaxma tốc độ

Sakura
21 tháng 1 2016 lúc 17:39

bài này linh tinh quá ko hiểu

Nguyễn Thiều Công Thành
Xem chi tiết
Minh Triều
Xem chi tiết
Nguyễn Quốc Khánh
6 tháng 3 2016 lúc 21:58

Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{4}{x^2+y^2}=\frac{8}{2x^2+2y^2}\)

Mặt khác:

\(2x^2+2y^2\ge x^2+y^2+2xy=\left(x+y\right)^2\)

=>\(\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{8}{\left(x+y\right)^2}\)

Ai thấy mình làm đúng thì tích nha.Ai tích mình mình tích lại

Phạm Thế Mạnh
6 tháng 3 2016 lúc 22:04

Khánh làm sai rồi
\(2x^2+2y^2\ge x^2+2xy+y^2\Rightarrow\frac{8}{2x^2+2y^2}\le\frac{8}{\left(x+y\right)^2}\)

Phạm Thế Mạnh
7 tháng 3 2016 lúc 12:03

\(\Leftrightarrow\frac{x^2+2xy+y^2}{x^2}+\frac{x^2+2xy+y^2}{y^2}\ge8\)
\(\Leftrightarrow\frac{2y}{x}+\frac{2x}{y}+\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge6\)-> là bđt đúng => đpcm
 

Nguyễn Đặng Hoàng Anh
Xem chi tiết
Lấp La Lấp Lánh
4 tháng 9 2021 lúc 22:20

a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)

\(\Leftrightarrow2x^2+2y^2\ge\left(x+y\right)^2\Leftrightarrow x^2+y^2\ge2xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\left(đúng\right)\)

b) \(x^3+y^3\ge\dfrac{\left(x+y\right)^3}{4}\)

\(\Leftrightarrow4x^3+4y^3\ge\left(x+y\right)^3\Leftrightarrow3x^3+3y^3\ge3x^2y+3xy^2\)

\(\Leftrightarrow3x^2\left(x-y\right)-3y^2\left(x-y\right)\ge0\)

\(\Leftrightarrow3\left(x-y\right)\left(x^2-y^2\right)\ge0\Leftrightarrow3\left(x-y\right)^2\left(x+y\right)\ge0\left(đúng\right)\)

 

Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 22:13

a: Ta có: \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)

\(\Leftrightarrow2x^2+2y^2-x^2-2xy-y^2\ge0\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)

Trên con đường thành côn...
4 tháng 9 2021 lúc 22:16

undefinedundefined

DŨNG NGUYỄN HACKER
Xem chi tiết
Penguin 96
Xem chi tiết
trần nhật minh
9 tháng 4 2016 lúc 22:23

BĐT tương đương

\(\left(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\right)\left(a+b+c\right)\ge\left(x+y+z\right)^2\)

sau đó nhân phá ra và đưa về dạng tổng các bình phương

Nhung Trần
Xem chi tiết
Thắng Nguyễn
17 tháng 7 2017 lúc 11:54

Xem câu hỏi

tth_new
11 tháng 10 2018 lúc 20:42

Áp dụng BĐT Cauchy-Schwarz,ta có:\(\left(\frac{x^2}{a}+\frac{y^2}{b}\right)\left(a+b\right)\ge\left(x+y\right)^2\). Chia hai vế cho a, b.Ta được:

\(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}^{\left(đpcm\right)}\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{x}{a}=\frac{y}{b}\)

Neet
Xem chi tiết
Neet
11 tháng 7 2017 lúc 20:55

@Ace Legona: sir tra hộ e câu này đúng hay sai đề vs ,nhẩm mãi không ra điểm rơi