Cho đường thẳng (d):y=(m-2)x+n với m khác 2
Tìm các điểm thuộc parabol (P); \(y=\frac{x^2}{2}\)
sao cho các điểm đó cách đều 2 trục tọa độ
Cho parabol (P): y=1/2 x2 và đường thẳng (d): y=-mx+3(m là tham số)
a)Các điểm M(-6;-8) N(√6;3) có thuộc parabol (P) hay không?vì sao?
b)Chứng minh rằng với mọi giá trị của m đường thẳng (d) luôn cắt (P) tại 2 điểm phân biệt
b. ta có PT hoành độ :
1/2 x2 = -mx+3
<=>x2+2mx-6=0
Cho parabol (P): y = -x^2 và đường thẳng (d): y = mx + 2
a)tìm m để (d) cắt (P) tại 1 điểm duy nhất
b)Cho 2 điểm A(-2,m) và B(1,m).Tìm m,n để A thuộc (P) và B thuộc (d)
a: Phương trình hoành độ giao điểm là:
\(-x^2-mx-2=0\)
\(\Leftrightarrow x^2+mx+2=0\)
\(\Delta=m^2-8\)
Để (P) cắt (d) tại 1 điểm duy nhất thì Δ=0
hay \(m\in\left\{2\sqrt{2};-2\sqrt{2}\right\}\)
b: Thay x=-2 vào (P), ta được:
\(y=-\left(-2\right)^2=-4\)
hay m=-4
Trong mặt phẳng tọa độ Oxy, cho parabol (p) : y=\(-\dfrac{x^2}{2}\)và đường thẳng (d): y=x+m
a) Tìm tọa độ điểm M thuộc parabol (P) biết điểm M có tung độ bằng -2
b,Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm A\(\left(x_1,M_1\right)\),B\(\left(x_2,y_2\right)\)
phân biệt thỏa mãn \(x_1x_2+x_1+x_2=10\)
giúp mk câu này với ạ
Trên mặt phẳng tọa độ Oxy, cho điểm N(3;-2) và đường thẳng d có phương trình y = x-m với m là tham số.
a) Tìm m để N thuộc đường thẳng d
b) Với m tìm xác định tọa độ giao điểm của đường thẳng d và parabol (P) có phương trình y=-4x2
b) Với m tìm được, xác định tọa độ giao điểm của đường thẳng d và parabol (P) có phương trình y=-4x2
Cho parabol \(y=\frac{1}{2}x^2\) và đường thẳng (d) y = mx + n. Xác định các hệ số m và n để đường thẳng d đi qua điểm A(1; 0) và tiếp xúc với Parabol. Tìm tọa độ của tiếp điểm?
Cho parabol (p): y=a\(x^2\) (a\(\ne0\)) và đường thẳng (d): y=x-2
1.Tìm a biết rằng điểm E(-1;-1) thuộc Parabol (P)
2.Xác định tọa đọ các giao điểm của đường thẳng (d) và parabol (P) với a vừa tim được;
3. Tính diện tích tam giác EMN với M và N là 2 giao điểm của (d) và (P) tìm được ở câu 2
Cho Parabol (P): y=x^2 và đường thẳng (d): y=2x-m^2+9
a. Tìm toạ độ các giao điểm của Parabol (P) và đường thẳng (d) khi m = 1.
b. Tìm m để đường thẳng (d) cắt Parabol (P) tại hai điểm nằm về hai phía của trục tung.
Giải chi tiết hộ mình nha
a) Khi \(m=1\) \(\Rightarrow\left(d\right):y=2x+8\)
Xét phương trình hoành độ giao điểm
\(x^2=2x+8\) \(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
+) Với \(x=4\Rightarrow y=16\)
+) Với \(x=-2\Rightarrow y=4\)
Vậy khi \(m=1\) thì (P) cắt (d) tại 2 điểm phân biệt \(\left(4;16\right)\) và \(\left(-2;4\right)\)
b) Xét phương trình hoành độ giao điểm
\(x^2-2x+m^2-9=0\) (*)
Ta có: \(\Delta'=10-m^2\)
Để (P) cắt (d) \(\Leftrightarrow\) Phương trình (*) có 2 nghiệm phân biệt
\(\Leftrightarrow\Delta'=10-m^2>0\) \(\Leftrightarrow-\sqrt{10}< m< \sqrt{10}\)
Theo đề: (P) cắt (d) tại 2 điểm nằm về 2 phía của trục tung
\(\Leftrightarrow\) Phương trình (*) có 2 nghiệm trái dấu
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\x_1x_2< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}10-m^2>0\\m^2-9< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-\sqrt{10}< m< \sqrt{10}\\-3< m< 3\end{matrix}\right.\) \(\Leftrightarrow-3< m< 3\)
Vậy ...
1. Tìm tập hợp các giá trị của m để phương trình x2 - 4x + m - 3 = 0 (2) có nghiệm.
2. Cho parabol (P): y = \(\frac{1}{2}x^2\) và đường thẳng
(d) y = 2x - m. Tìm m để :
a/ Đường thẳng (d) tiếp xúc với parabol (P)
b/ Đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt
c/ Đường thẳng (d) và parabol (P) không có điểm chung
\(1.pt:x^2-4x+m-3=0\)
\(\Delta=\left(-4\right)^2-4.1.\left(m-3\right)=28-4m\)
Để pt trên có nghiệm thì \(28-4m\ge0\Leftrightarrow-4m\ge-28\Leftrightarrow m\le7\)
Với các giá trị \(m\le7\) thì pt trên có nghiệm ( có nghiệm kép hoặc 2 nghiệm phân biệt)
\(2.\left\{{}\begin{matrix}\left(P\right):y=\frac{1}{2}x^2\\\left(d\right):y=2x-m\end{matrix}\right.\)
Tọa độ giao điểm của (P) và (d) là nghiệm của hpt:
\(\left\{{}\begin{matrix}y=\frac{1}{2}x^2\\y=2x-m\end{matrix}\right.\Leftrightarrow\frac{1}{2}x^2-2x+m=0\left(\alpha\right)\)
Xét \(pt\left(\alpha\right):\Delta=\left(-2\right)^2-\frac{4.1}{2}.m=4-2m\)
a. Để \(\left(P\right)tx\left(d\right)\) thì \(\Delta=0\Leftrightarrow4-2m=0\Leftrightarrow m=2\)
b. Để (P) cắt (d) tại 2 điểm phần biệt thì \(\Delta>0\Leftrightarrow4-2m>0\Leftrightarrow m< 2\)
c. Để (P) và (d) không có điểm chung thì \(\Delta< 0\Leftrightarrow4-2m< 0\Leftrightarrow m>2\)
trong mặt phẳng tọa độ oxy cho parabol (p) y=x^2 và hai đường thẳng (d): y=m; (d'):y=m^2 (với 0<m<1). Đường thẳng (d) cắt parabol (P) tại hai điểm A,B; đường thẳng (d') cắt parabol (P) tại hai điểm phân biệt C,D (với hoành độ điểm A và D là số âm). Tìm m sao cho diện tích hình thang ABCD gấp 9 lần diện tích tam giác OCD