Cho a, b, c là các số nguyên khác 0, a ≠ c sao cho \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\) . Chứng minh rằng a2 + b2 + c2 không phải là số nguyên tố.
Cho a,b,c là các số nguyên khác 0, \(a\ne c\)sao cho \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\).Chứng minh rằng \(a^2+b^2+c^2\)không phải là số nguyên tố
Cho \(a,b,c\) là các số tự nhiên khác \(0\), \(a\ne c\) sao cho \(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\). Chứng minh rằng \(a^2+b^2+c^2\) không phải là số nguyên tố.
cho a,b,c là các số nguyên khác 0,\(a\ne c\)thỏa mãn \(\frac{a}{c}=\frac{a^2+b^2}{c^2+b^2}\). chứng minh rằng \(a^2+b^2+c^2\)không thể là số nguyên tố
Ta có: \(\frac{a}{c}=\frac{a^2+b^2}{c^2+b^2}\)\(\Leftrightarrow a\left(c^2+b^2\right)=c\left(a^2+b^2\right)\)\(\Leftrightarrow ac^2+ab^2=a^2c+b^2c\Leftrightarrow ac\left(c-a\right)-b^2\left(c-a\right)=0\)
\(\Leftrightarrow\left(c-a\right)\left(ac-b^2\right)=0\)
Vì \(a\ne c\)nên \(c-a\ne0\)
Do đó \(ac-b^2=0\Leftrightarrow ac=b^2\Rightarrow\sqrt{ac}=b\)
Giả sử \(a^2+b^2+c^2\)là số nguyên tố
Ta có \(a^2+b^2+c^2=a^2+ac+c^2=\left(a+c\right)^2-ac=\left(a+c\right)^2-b^2\)\(=\left(a-b+c\right)\left(a+b+c\right)\)
\(=\left[\left(\sqrt{a}\right)^2-2\sqrt{ac}+\left(\sqrt{c}\right)^2+\sqrt{ac}\right]\left[\left(\sqrt{a}\right)^2-2\sqrt{ac}+\left(\sqrt{c}\right)^2+3\sqrt{ac}\right]\)
\(\left[\left(\sqrt{a}-\sqrt{c}\right)^2+\sqrt{ac}\right]\left[\left(\sqrt{a}-\sqrt{c}\right)^2+3\sqrt{ac}\right]\)
Vì \(a^2+b^2+c^2\)là số nguyên tố nên có một ước số là 1
Mà \(\left(\sqrt{a}-\sqrt{c}\right)^2+\sqrt{ac}< \left(\sqrt{a}-\sqrt{c}\right)^2+3\sqrt{ac}\)
nên \(\left(\sqrt{a}-\sqrt{c}\right)^2+\sqrt{ac}=1\Leftrightarrow\left(\sqrt{a}-\sqrt{c}\right)^2=1-\sqrt{ac}\)
Vì \(a\ne c\Rightarrow\sqrt{a}\ne\sqrt{c}\Rightarrow\sqrt{a}-\sqrt{c}\ne0\)\(\Rightarrow\left(\sqrt{a}-\sqrt{c}\right)^2>0\)
Do đó \(1-\sqrt{ac}>0\Rightarrow\sqrt{ac}< 1\Rightarrow ac< 1\)(1)
Mà \(a^2+b^2>0\)và \(c^2+b^2>0\)nên \(\frac{a^2+b^2}{c^2+b^2}>0\Rightarrow\frac{a}{c}>0\Rightarrow\)a, c cùng dấu \(\Rightarrow ac>0\)(2)
Từ (1), (2) suy ra \(0< ac< 1\)
Mà a,c là số nguyên nên ac là số nguyên
Do đó không có giá trị a,c thỏa mãn
suy ra điều giả sử sai
Vậy \(a^2+b^2+c^2\) không thể là số nguyên tố
Ể vậy là tự hỏi tự trả lời luôn kì vậy ai chơi
Bài tập 7: Cho a, b, c là các số nguyên khác 0, a \(\ne\) c thỏa mãn \(\frac{a}{c}=\frac{a^2+b^2}{c^2+b^2}\) . Chứng minh rằng \(a^2+b^2+c^2\) không thể là số nguyên tố.
Ta có:
\(\frac{a}{c}=\frac{a^2+b^2}{c^2+b^2}\)
\(\Leftrightarrow ac^2+ab^2=ca^2+cb^2\)
\(\Leftrightarrow ac\left(c-a\right)=b^2\left(c-a\right)\)
\(\Leftrightarrow ac=b^2\)
Thế vô ta được
\(a^2+b^2+c^2=a^2+2ac+c^2+b^2-2ac\)
\(=\left(a+c\right)^2-b^2=\left(a+c-b\right)\left(a+c+b\right)\)
Làm nốt
cho các số tự nhiên a,b,c khác 0,sao cho a^b +c,b^c+a,c^a+b đều là các số nguyên tố. Chứng minh rằng 2 trong các số đã cho phải bằng nhau
Cho a,b,c là các số khác 0 và b khác c thoa mãn \(\frac{a}{c}=\frac{a^2+b^2}{c^2+b^2}\)
Chứng minh răng \(a^2+b^2+c^2\)không là sô nguyên tố
chứng minh các stn a,b,c khác o,sao cho a^b+c,b^c+a,c^a+b đếu là ác số nguyên tố .Chứng minh rằng 2 số đã cho phải bằng nhau
Cho các số tự nhiên a , b , c khác 0 , sao cho ab + c,bc + a,ca + b đều là các số nguyên tố . Chứng minh rằng 2 trong các số đã cho phải bằng nhau
Trong ba số tự nhiên a,b,c phải có ít nhất hai số cùng chẵn lẻ .
Giả sử : hai số đó là a và b .
Vì : bc cùng tính chẵn lẻ với b ⇒p=bc+a⇒p=bc+a chẵn
Mà : p là số nguyên tố ⇒p=2⇒b=a=1⇒p=2⇒b=a=1
Khi đó : q=ab+c=1+c=ca+1=ca+b=rq=ab+c=1+c=ca+1=ca+b=r
Nếu hai số cùng tính chẵn lẻ là a và c hoặc b và c thì ta làm tương tự như trên
⇒⇒ Trong ba số nguyên tố p,q,r phải có hai số bằng nhau .
cho a,b,c,d là các số tự nhiên thỏa mãn : đôi 1 khác nhau và a2+d2=b2+c2=t.
chứng minh ab+cd và ac+bd không thể đồng thời là số nguyên tố
Lời giải:
Ta thấy:
$(ab+cd)(ac+bd)=ad(c^2+b^2)+bc(a^2+d^2)$
$=(ad+bc)t$
Mà:
$2(t-ab-cd)=(a-b)^2+(c-d)^2>0$ nên $t> ab+cd$
Tương tự: $t> ac+bd$
Kết hợp $(ab+cd)(ac+bd)=(ad+bc)t$ nên:
$ab+cd> ad+bc, ac+bd> ad+bc$
Nếu $ab+cd, ac+bd$ đều thuộc $P$. Do $ad+bc$ là ước của $ab+cd$ hoặc $ac+bd$. Điều này vô lý
Do đó ta có đpcm.
Cho a;b;c là các số nguyên tố . Tìm a;b;c , biết :
a2 + b2 + c2 = 5070
Lời giải:
Không mất tổng quát giả sử $a\leq b\leq c$
Nếu $a,b,c$ đều là số nguyên tố lẻ thì $a^2+b^2+c^2$ là số lẻ. Mà $5070$ chẵn nên vô lý.
Do đó trong 3 số $a,b,c$ tồn tại ít nhất 1 số chẵn.
Số nguyên tố chẵn luôn là số bé nhất (2) nên $a=2$
Khi đó: $b^2+c^2=5070-a^2=5066\geq 2b^2$
$\Rightarrow b^2\leq 2533$
$\Rightarrow b< 51$
$\Rightarrow b\in \left\{2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37; 41; 43; 47\right\}$
Thử các TH này ta thấy $(b,c)=(5,71), (29,65)$
Vậy $(a,b,c)=(2,5,71), (2,29,65)$ và các hoán vị.
vì 5070 là số chẵn ⇒ một trong 3 số a,b,c chẵn hoặc cả 3 số a,b,c chẵn
+) cả 3 số a,b,c chẵn
=> a=2, b=2, c=2 ( vì a,b,c là các số nguyên tố )
khi đó: a2+b2+c2= 12(loại)
=> một trong 3 số a,b,c chẵn
vì giá trị các số bằng nhau, giả sử a chẵn => a=2
khi đó: a2+b2+c2= 4+b2+c2
=> b2+c2= 5066
vì số chính phương có tận cùng là 0, 1, 4, 5, 6, 9 mà b2 và c2 là số chính phương có tận cùng là 0, 1, 4, 5, 6, 9
=> b2 và c2 có tận cùng là 0, 1, 4, 5, 6, 9
Mà b và c lẻ
=> b2 và c2 có tận cùng là 1, 5, 9
mà 5066 có tận cùng là 6
=> b2 và c2 có tận cùng là 1, 5
=> b và c có tận cùng là 1, 5
giả sử b có tận cùng là 5=> b=5
khi đó: 25+ c2 = 5066
c2 = 5041=712
=> c = 71
vậy, a=2, b=5, c=71 và các hoán vị của nó