Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh Ngân
Xem chi tiết
 ๖ۣۜFunny-Ngốkツ
Xem chi tiết
Pain Thiên Đạo
17 tháng 1 2018 lúc 20:48

hóng với ai biết làm chỉ công thức đê , cho chúa Pain  làm với :))

kici đặng
17 tháng 1 2018 lúc 22:22
mik gửi link qua rồi đó , nhận hàng đi
Phan Nghĩa
15 tháng 8 2020 lúc 9:32

\(A=\frac{3x^2+4}{4x}+\frac{2+y^3}{y^2}=\frac{3x^2}{4x}+\frac{4}{4x}+\frac{2}{y^2}+\frac{y^3}{y^2}\)

\(=\frac{3x}{4}+\frac{1}{x}+\frac{2}{y^2}+y=\left(\frac{1}{x}+\frac{x}{4}\right)+\frac{1}{2}x+\frac{1}{2}y+\frac{2}{y^2}+\frac{1}{2}y\)

\(=\left(\frac{1}{x}+\frac{x}{4}\right)+\frac{1}{2}\left(x+y\right)+\frac{2}{y^2}+\frac{y}{4}+\frac{y}{4}\)

\(=\left(\frac{1}{x}+\frac{x}{4}\right)+\frac{x+y}{2}+\left(\frac{2}{y^2}+\frac{y}{4}+\frac{y}{4}\right)\)

Áp dụng BĐT Cô-si ta có :

\(\frac{1}{x}+\frac{x}{4}\ge2\sqrt[2]{\frac{1}{x}.\frac{x}{4}}=2\sqrt[2]{\frac{x}{4x}}=2\sqrt[2]{\frac{1}{4}}=2.\frac{1}{2}=1\)

\(\frac{2}{y^2}+\frac{y}{4}+\frac{y}{4}\ge3\sqrt[3]{\frac{2}{y^2}.\frac{y}{4}.\frac{y}{4}}=3\sqrt[3]{\frac{2.y.y}{y^2.4.4}}=3\sqrt[3]{\frac{2y^2}{16y^2}}=3.\sqrt[3]{\frac{1}{8}}=\frac{3}{2}\)

Và theo giả thiết ta có \(x+y\ge4\Leftrightarrow\frac{x+y}{2}\ge2\)

Cộng theo vế các bất đẳng thức cùng chiều ta được :

\(\left(\frac{1}{x}+\frac{4}{x}\right)+\left(\frac{2}{y^2}+\frac{y}{4}+\frac{y}{4}\right)+\frac{x+y}{2}\ge1+\frac{3}{2}+2=\frac{9}{2}\)

Dấu = xảy ra khi và chỉ khi \(x=y=2\)

Vậy \(Min_A=\frac{9}{2}\)đạt được khi \(x=y=2\)

Khách vãng lai đã xóa
Anh Pha
Xem chi tiết
Phạm Lê Phương Thảo
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
25 tháng 9 2020 lúc 21:32

C với D mình làm sau vì nó phức tạp hơn ... E với F trước nhé

E = | 3x + 1 | + 2| x - y | + 1

\(\hept{\begin{cases}\left|3x+1\right|\ge0\\2\left|x-y\right|\ge0\end{cases}\forall}x,y\Rightarrow\left|3x+1\right|+2\left|x-y\right|+1\ge1\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}3x+1=0\\x-y=0\end{cases}}\Leftrightarrow x=y=-\frac{1}{3}\)

=> MinE = 1 <=> x = y = -1/3

F = 5| x - 1 | + 1/2| 2x + y | + 2020

\(\hept{\begin{cases}5\left|x-1\right|\ge0\\\frac{1}{2}\left|2x+y\right|\ge0\end{cases}\forall}x,y\Rightarrow5\left|x-1\right|+\frac{1}{2}\left|2x+y\right|+2020\ge0\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\2x+y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

=> MinF = 2020 <=> x = 1 ; y = -2

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
25 tháng 9 2020 lúc 21:46

C = 2| x - 1 | + | 2x + 3 | - 2020

= | 2x - 2 | + | 2x + 3 | - 2020

= | 2x - 2 | + | -( 2x + 3 ) | - 2020

= | 2x - 2 | + | -2x - 3 | - 2020

Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :

C = | 2x - 2 | + | -2x - 3 | - 2020 ≥ | 2x - 2 - 2x - 3 | - 2020 = | -5 | - 2020 = 5 - 2020 = -2015

Dấu "=" xảy ra khi ab ≥ 0

=> ( 2x - 2 )( -2x - 3 ) ≥ 0

Xét hai trường hợp :

1. \(\hept{\begin{cases}2x-2\ge0\\-2x-3\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\ge2\\-2x\ge3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le-\frac{3}{2}\end{cases}}\)( loại )

2. \(\hept{\begin{cases}2x-2\le0\\-2x-3\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\le2\\-2x\le3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge-\frac{3}{2}\end{cases}}\Leftrightarrow-\frac{3}{2}\le x\le1\)

=> MinC = -2015 <=> \(-\frac{3}{2}\le x\le1\)

D = | 3 - 2x | + 2| 1 - x | + 1/2

= | 3 - 2x | + | 2 - 2x | + 1/2

= | -( 3 - 2x ) | + | 2 - 2x | + 1/2

= | 2x - 3 | + | 2 - 2x | + 1/2

Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :

D = | 2x - 3 | + | 2 - 2x | + 1/2 ≥ | 2x - 3 + 2 - 2x | + 1/2 = | -1 | + 1/2 = 1 + 1/2 = 3/2

Dấu "=" xảy ra khi ab ≥ 0

=> ( 2x - 3 )( 2 - 2x ) ≥ 0

Xét hai trường hợp :

1. \(\hept{\begin{cases}2x-3\ge0\\2-2x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\ge3\\-2x\ge-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{3}{2}\\x\le1\end{cases}}\)( loại )

2. \(\hept{\begin{cases}2x-3\le0\\2-2x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\le3\\-2x\le-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{3}{2}\\x\ge1\end{cases}}\Leftrightarrow1\le x\le\frac{3}{2}\)

=> MinD = 3/2 <=> \(1\le x\le\frac{3}{2}\)

Khách vãng lai đã xóa
Phạm Lê Phương Thảo
26 tháng 9 2020 lúc 4:58

Cảm ơn bạn nhiều

Khách vãng lai đã xóa
Phi DU
Xem chi tiết
ngonhuminh
13 tháng 2 2017 lúc 22:33

đặt x^2-7x=y=> \(y\ge-\frac{49}{4}\) (*)

\(A=y\left(y+12\right)=y^2+12y=\left(y+6\right)^2-36\ge-36\)

đẳng thức khi y=-6 thủa mãn đk (*)

Vậy: GTNN của A=-36 khí y=-6 =>\(\left[\begin{matrix}x=1\\x=6\end{matrix}\right.\)

huong nguyen
Xem chi tiết
luyen hong dung
Xem chi tiết
Nguyễn Hoàng Vũ
Xem chi tiết
Nguyễn Minh Đăng
18 tháng 10 2020 lúc 18:08

Áp dụng BĐT Bunyakovsky ta được:

\(\left(x+y\right)\left(\frac{2020}{x}+\frac{1}{2020y}\right)\ge\left(\sqrt{x}\cdot\sqrt{\frac{2020}{x}}+\sqrt{y}\cdot\sqrt{\frac{1}{2020y}}\right)\)

\(=\left(\sqrt{2020}+\sqrt{\frac{1}{2020}}\right)^2=2020+\frac{1}{2020}+2=2022\frac{1}{2020}\)

\(\Leftrightarrow\frac{2021}{2020}\cdot S\ge2022\frac{1}{2020}\)

\(\Rightarrow S\ge2022\frac{1}{2020}\div\frac{2021}{2020}=2021\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\frac{\sqrt{x}}{\sqrt{\frac{2020}{x}}}=\frac{\sqrt{y}}{\sqrt{\frac{1}{2020y}}}\\x+y=\frac{2021}{2020}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2020y\\x+y=\frac{2021}{2020}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=1\\y=\frac{1}{2020}\end{cases}}\)

Vậy Min(S) = 2021 khi \(\hept{\begin{cases}x=1\\y=\frac{1}{2020}\end{cases}}\)

Khách vãng lai đã xóa
Minh Hiếu
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 10 2021 lúc 21:12

\(1,\\ b,\Leftrightarrow\left(x^2+4x+4\right)+\left(y-1\right)^2=25\\ \Leftrightarrow\left(x+2\right)^2+\left(y-1\right)^2=25\)

Vậy pt vô nghiệm do 25 ko phải tổng 2 số chính phương

\(2,\\ a,\Leftrightarrow x^2-\left(y^2-6y+9\right)=47\\ \Leftrightarrow x^2-\left(y-3\right)^2=47\)

Mà 47 ko phải hiệu 2 số chính phương nên pt vô nghiệm

\(b,\Leftrightarrow\left(x-2\right)^2+\left(3y-1\right)^2=16\)

Mà 16 ko phải tổng 2 số chính phương nên pt vô nghiệm

Akai Haruma
5 tháng 10 2021 lúc 21:30

1a. Đề lỗi

1b. 

PT $\Leftrightarrow (x+2)^2+(y-1)^2=25$

$\Leftrightarrow (x+2)^2=25-(y-1)^2\leq 25$

$(x+2)^2$ là scp không vượt quá $25$ nên có thể nhận các giá trị $0,1,4,9,16,25$

Nếu $(x+2)^2=0\Rightarrow (y-1)^2=25$

$\Rightarrow (x,y)=(-2, 6), (-2, -4)$
Nếu $(x+2)^2=1\Rightarrow (y-1)^2=24$ không là scp (loại)

Nếu $(x+2)^2=4\Rightarrow (y-1)^2=21$ không là scp (loại)

Nếu $(x+2)^2=9\Rightarrow (y-1)^2=16$

$\Rightarrow (x,y)=(1, 5), (1, -3), (-5,5), (-5, -3)$

Nếu $(x+2)^2=25\Rightarrow (y-1)^2=0$

$\Rightarrow (x,y)=(3, 1), (-7, 1)$

Akai Haruma
5 tháng 10 2021 lúc 21:33

1c. 

Vì $x^2$ là scp nên $x^2\equiv 0,1\pmod 3$

$3(y-1)^2\equiv 0\pmod 3$

$\Rightarrow x^2+3(y-1)^2\equiv 0,1\pmod 3$

Mà $2021\equiv 2\pmod 3$
Do đó pt $x^2+3(y-1)^2=2021$ vô nghiệm

1d.

Ta thấy:

$(3x-1)^{2020}$ là scp không chia hết cho $3$ nên $(3x-1)^{2020}\equiv 1\pmod 3$

$18(y-2)^{2019}\equiv 0\pmod 3$

$\Rightarrow (3x-1)^{2020}+18(y-2)^{2019}\equiv 1\pmod 3$
Mà $2019^{2020}\equiv 0\pmod 3$
Do đó pt vô nghiệm.