cho ΔABC có góc B>góc C
so sánh AC và AB
b) ΔABC có AC>AB
1) so sánh góc B và góc C
2)kẻ đường AH⊥BC (H∈BC).so sánh HB và HC
Cho tam giác ABC có AB>AC. Vẽ AH vuông tại BC ( H thuộc BC) A/so sánh góc B và góc C B/so sánh các đọan thẳng HB và HC
a)Xét t/giác ABC có AB>AC
⇒ ACB>ABC(quan hệ giữa góc và cạnh đối diện)
b) Ta có: AB > AC (gt)
⇒ HB > HC (quan hệ giữa hình xiên và đường chiếu của chúng)
Bài 15. Cho ΔABC biết ^B>^C vẽ AH vuông góc với BC tại H. Lấy D nằm giữa A và H. So sánh: a) AB và AC b) HB và HC c) ^DBC và ^DCB Bài 16. Cho ΔABC, AM là đường trung tuyến của ΔABC. Trên tia đối của tia MA, lấy D sao cho MD=MA. Chứng minh: a) ΔAMB = ΔDMC b) AB // CD c) AB + AC > 2AM.
Xét tam giác ABC có góc B > góc C suy ra AC > AB
Xét tam giác vuông ABH và tam giác vuông ACH
chung AH
có AC > AB (CMT)
suy ra HC > HB
c) Vì HC > HB (CMT)
Xét tam giác vuông BHD và tam giác vuông CHD
Có chung DH , BC >HB nên DC >DB
Xét tam giác BDC có DC > DB nên góc DBC > góc DCB
Bài 16:
Xét tam giác ABM và tam giác DCM
có AM=DM (GT)
góc AMB=góc DMC (đối đỉnh)
BM=MC (GT)
suy ra tam giác ABM=tam giác DCM (c.g.c) (1)
b) Từ (1) suy ra góc MAB = góc MDC (hai góc tuơng ứng)
mà góc MAB so le trong góc MDC
suy ra AB // CD
c) Từ (1) suy ra AB = CD
Xét tam giác ACD có AC + CD > AD
mà AD=2AM, AB=CD (CMT)
suy ra AC +AB >2AM
Bài 3: Cho ΔABC cân có AB = AC = 5cm, BC = 8cm. Kẻ AH vuông góc BC (H thuộc BC)
a. Chứng minh: HB = HC.
b. Tính độ dài AH.
c. Kẻ HD vuông góc với AB (D∈AB), kẻ HE vuông góc với AC (E∈AC).
Chứng minh ΔHDE cân.
d) So sánh HD và HC.
Bài 4. Cho tam giác ABC có AB = AC = 5cm, BC = 6cm. Đường trung tuyến AM xuất phát từ đỉnh A của tam giác ABC.
a) Chứng minh ΔAMB = ΔAMC và AM là tia phân giác của góc A.
b) Chứng minh AM
c) Tính độ dài các đoạn thẳng BM và AM.
d) Từ M vẽ ME AB (E thuộc AB) và MF AC (F thuộc AC). Tam giác MEF là tam giác gì? Vì sao?
Bài 3:
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(hai cạnh tương ứng)
b) Ta có: BH=CH(cmt)
mà BH+CH=BC(H nằm giữa B và C)
nên \(BH=CH=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AH^2=AB^2-BH^2=5^2-4^2=9\)
hay AH=3(cm)
Vậy: AH=3(cm)
c) Xét ΔDBH vuông tại D và ΔECH vuông tại E có
BH=CH(cmt)
\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)
Do đó: ΔDBH=ΔECH(cạnh huyền-góc nhọn)
Suy ra: HD=HE(hai cạnh tương ứng)
Xét ΔHDE có HD=HE(cmt)
nên ΔHDE cân tại H(Định nghĩa tam giác cân)
Bài 4:
a) Xét ΔAMB và ΔAMC có
AM chung
MB=MC(M là trung điểm của BC)
AB=AC(ΔBAC cân tại A)
Do đó: ΔAMB=ΔAMC(c-c-c)
Suy ra: \(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)
hay AM là tia phân giác của \(\widehat{BAC}\)(đpcm)
b) Ta có: AB=AC(ΔABC cân tại A)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: MB=MC(M là trung điểm của BC)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AM là đường trung trực của BC
hay AM\(\perp\)BC
c) Ta có: BM=CM(M là trung điểm của BC)
nên \(BM=CM=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABM vuông tại M, ta được:
\(AB^2=AM^2+BM^2\)
\(\Leftrightarrow AM^2=AB^2-BM^2\)
\(\Leftrightarrow AM^2=5^2-3^2=16\)
hay AM=4(cm)
Vậy: BM=3cm; AM=4cm
Bài 1. Cho tam giác ABC có AB= 8cm, AC=6cm, BC= 10 cm
a. Chứng minh tam giác ABC vuông
b. Vẽ AH vuông góc vs BC tại H. So sánh HB và AB. So sánh HC và AC
c. So sánh HB và HC
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC). a, Chứng minh HB=HC
b, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân. c, So sánh HD và H
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểmcủa BC
hay HB=HC
b: Xét ΔADH vuông tạiD và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
Suy ra HD=HE
hay ΔHDE cân tại H
Cho cân có AB = AC = 5cm, BC = 8cm. Kẻ AH vuông góc BC (HBC)
a) Chứng minh: HB = HC.
b) Tính độ dài AH.
c) Kẻ HD vuông góc với AB (DAB), kẻ HE vuông góc với AC (EAC).
Chứng minh cân.
d) So sánh HD và HC.
Cho tam giác ABC vuông tại A, có AB=12cm AC=16cm. Kẻ đường cao AH (H€BC)
a, Tính BC
b, So sánh góc B và C, HB và HC
, cho tam giác ABC cân có AB=AC=5cm, BC=8cm. kẻ AH vuông góc BC(H thuộc BC)
a) chứng minh :HB=HC
b) tính độ dài AH
c) kẻ HD vuông góc với AB (D thuộc AB), kẻ HE vuông góc với AC (E thuộc AC)
d) so sánh HD và HC
Hình bạn tự vẽ nha !
a) Vì tam giác ABC cân => góc B = góc C
Xét tam giác ABH và tam giác ACH có:
AB = AC ( gt )
góc B = góc C ( cmt )
AH là cạnh chung
=> tam giác ABH = tam giác ACH ( c.g.c )
=> HB = HC ( hai cạnh tương ứng )
b) Vì HB = HC ( cmt )
Mà HB + HC = 8 cm => HB = HC = 8/2 = 4 cm
Xét tam giác ABH vuông tại H có:
AH mũ 2 + BH mũ 2 = AB mũ 2 ( pitago )
AH mũ 2 + 4 mũ 2 = 5 mũ 2
AH mũ 2 + 16 = 25
AH mũ 2 = 25 - 16
AH mũ 2 = 9
=> AH = căn bậc 2 của 9 = 3 cm
c) Hình như bạn viết thiếu đề ròi
d) Mình bó tay :P
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).
a, Chứng minh HB=HC
b, Tính độ dài AH.
c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng
minh tam giác HDE cân.
d, So sánh HD và HC.
Xét tam giác ABH và tam giác ACH
AB=AC(GT)
^AHB=^AHC=90o
^ABH=^ACH ( TAM GIÁC ABC CÂN TẠI A)
=> tam giác ABH = tam giác ACH
=> HB=HC ( 2c tứ)
có HB+HC=BC
mà BC=8 cm
HB=HC
=> HB=HC=4cm
Xét tam giác ABH : ^H=90o
=> AB2+AH2+BH2(đ/lý pythagoras)
thay số ta có :
52=AH2+42
25-16=AH2
9=AH2
3=AH
c)Xét tam giác BDH và tam giác ECH
^BDH= ^ HEC =90o
BH=CH
^DBH=^ECH ( TAM GIÁC ABC CÂN TẠI A)
=> tam giác BDH = tam giác ECH
=> DH=EH
=> HDE CÂN TẠI H (Đ/N)
d) qua tia đối của DH ; kẻ HK sao cho HK= DH
CÓ : tam giác HCK có cạnh HK là cạnh lớn nhất ( cạnh huyền) => HK > HC
mà HD=HK
=> HD>HC
Cho ΔABC vuông tại A có AB =3cm AC =4cm, kẻ đường cao AH (H ∈ BC)
a) Tính BC.
b) So sánh \(\widehat{B}\) và \(\widehat{C}\); HB và HC.
Help me câu b).
Vì ΔABC vuông tại A
==> BC2 = AC2 +AB2 ( Định lý Pitago )
BC2 = 42 + 32
BC2 = 27
==> BC = √27
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=3^2+4^2=25\)
hay BC=5(cm)
Vậy: BC=5cm
b) Xét ΔABC có AC>AB(4cm>3cm)
mà góc đối diện với cạnh AC là \(\widehat{ABC}\)
và góc đối diện với cạnh AB là \(\widehat{ACB}\)
nên \(\widehat{B}>\widehat{C}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)