Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bạch Dạ Y
Xem chi tiết
Hoàng Việt Hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 5 2023 lúc 14:39

Mở ảnh

Lê Hoài Nam
Xem chi tiết
Lầy Văn Lội
4 tháng 5 2017 lúc 12:05

Áp dụng bất đẳng thức cauchy-schwarz dạng engel:

\(P=\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\)

lại có theo AM-GM :\(ab+bc+ca\le a^2+b^2+c^2\)

\(\Rightarrow P\ge a^2+b^2+c^2\)(*)

Áp dụng bất đẳng thức AM-GM: \(\left(a^2+1\right)+\left(b^2+1\right)+\left(c^2+1\right)\ge2a+2b+2c\)(1)

và \(a^2+b^2+c^2\ge ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)(2)

cộng theo vế (1) và (2): \(3\left(a^2+b^2+c^2\right)+3\ge2\left(a+b+c+ab+bc+ca\right)=12\)

\(\Leftrightarrow a^2+b^2+c^2\ge3\)(**)

từ (*) và (**) ta có \(P\ge3\)

đẳng thức xảy ra khi a=b=c=1

dia fic
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 1 2021 lúc 11:33

\(Q=\dfrac{2-\dfrac{c}{a}-\dfrac{2b}{a}+\left(\dfrac{b}{a}\right)\left(\dfrac{c}{a}\right)}{1-\dfrac{b}{a}+\dfrac{c}{a}}=\dfrac{2-mn+2\left(m+n\right)-mn\left(m+n\right)}{1+m+n+mn}\)

\(Q=\dfrac{\left(2-mn\right)\left(m+n+1\right)}{\left(m+1\right)\left(n+1\right)}\ge\dfrac{\left[8-\left(m+n\right)^2\right]\left(m+n+1\right)}{\left(m+n+2\right)^2}\)

Đặt \(m+n=t\Rightarrow0\le t\le2\)

\(Q\ge\dfrac{\left(8-t^2\right)\left(t+1\right)}{\left(t+2\right)^2}-\dfrac{3}{4}+\dfrac{3}{4}=\dfrac{\left(2-t\right)\left(4t^2+15t+10\right)}{4\left(t+2\right)^2}+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu "=" xảy ra khi \(t=2\) hay \(m=n=1\)

Hoàng Thị Ngọc Anh
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 3 2023 lúc 4:45

Do \(\left\{{}\begin{matrix}a\ge0\\b\ge1\\a+b+c=5\end{matrix}\right.\) \(\Rightarrow c\le4\)

\(\Rightarrow2\le c\le4\Rightarrow\left(c-2\right)\left(c-4\right)\le0\Rightarrow c^2\le6c-8\)

\(0\le a\le1< 6\Rightarrow a\left(a-6\right)\le0\Rightarrow a^2\le6a\)

\(1\le b\le2< 5\Rightarrow\left(b-1\right)\left(b-5\right)\le0\Rightarrow b^2\le6b-5\)

Cộng vế:

\(a^2+b^2+c^2\le6\left(a+b+c\right)-13=17\)

\(A_{max}=17\) khi \(\left(a;b;c\right)=\left(0;1;4\right)\)

Linh Nguyễn
Xem chi tiết
tnt
Xem chi tiết
hnamyuh
23 tháng 2 2023 lúc 1:32

L N T 39
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 3 2021 lúc 18:21

Đặt \(\left(a+1;b+1;c+1\right)=\left(x;y;z\right)\Rightarrow1\le x\le y\le z\le2\)

\(B=\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{y}{x}+\dfrac{z}{y}+\dfrac{z}{x}+\dfrac{x}{z}+3\) (1)

Do \(x\le y\le z\Rightarrow\left(z-y\right)\left(y-x\right)\ge0\)

\(\Leftrightarrow xy+yz\ge y^2+zx\)

\(\Leftrightarrow\dfrac{x}{z}+1\ge\dfrac{y}{z}+\dfrac{x}{y}\)

Tương tự: \(1+\dfrac{z}{x}\ge\dfrac{y}{x}+\dfrac{z}{y}\)

Cộng vế: \(2+\dfrac{x}{z}+\dfrac{z}{x}\ge\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{y}{x}\) (2)

Từ (1); (2) \(\Rightarrow B\le2\left(\dfrac{x}{z}+\dfrac{z}{x}\right)+5\)

Đặt \(\dfrac{z}{x}=t\Rightarrow1\le t\le2\)

\(\Rightarrow B\le2\left(t+\dfrac{1}{t}\right)+5=\dfrac{2t^2+2}{t}+5=\dfrac{2t^2+2}{t}-5+10\)

\(\Rightarrow B\le\dfrac{2t^2-5t+2}{t}+10=\dfrac{\left(t-2\right)\left(2t-1\right)}{t}+10\le10\)

\(B_{max}=10\) khi \(t=2\) hay \(\left(a;b;c\right)=\left(0;0;1\right);\left(0;1;1\right)\)

Phạm Thị Hằng
Xem chi tiết
vũ tiền châu
22 tháng 9 2017 lúc 20:13

a)  ta có \(S=a+\frac{1}{4a}+b+\frac{1}{4b}+c+\frac{1}{4c}+\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

 Áp dụng bất đẳng thức cô si ta có \(a+\frac{1}{4a}\ge2\sqrt{\frac{a.1}{4a}}=2.\frac{1}{2}=1\)

tương tự ta có \(b+\frac{1}{4b}\ge1;c+\frac{1}{4c}\ge1\)

=> \(a+\frac{1}{4a}+b+\frac{1}{4b}+c+\frac{1}{4c}\ge3\)

mặt khác Áp dụng bất đẳng thức svác sơ ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\ge\frac{9}{\frac{3}{2}}=6\) (vì a+b+c<=3/2)

cộng từng vế ta có \(S\ge9\)

dấu = xảy ra <=> a=b=c=1/2

câu 2 tương tự

vũ tiền châu
22 tháng 9 2017 lúc 20:15

chết quên khi mà cậu dùng svác sơ xong thì cậu phải nhân thêm 3/4 nữa rồi mới cộng vào để tính Smin