Cho \(0\le a,b,c\le1\). Tìm giá trị nhỏ nhất của P = a + b + c - ab - bc - ac
Cho các số thực a,b,c,d thỏa mãn : \(-1\le a,b,c,d\le1\)Tìm giá trị lớn nhất của biểu thức N= (a+b+c+d)-(ab+ac+ad+bc+bd+cd)
cho \(0\le a,b\le1\)chứng minh \(a^4+b^3+c^2-ab-bc-ac\le1\)
Cho a + b + c + ab + ac + bc = 6 và a, b, c > 0.
Tìm giá trị nhỏ nhất của biểu thức
P = a³/b + b³/c + c³/a
Áp dụng bất đẳng thức cauchy-schwarz dạng engel:
\(P=\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\)
lại có theo AM-GM :\(ab+bc+ca\le a^2+b^2+c^2\)
\(\Rightarrow P\ge a^2+b^2+c^2\)(*)
Áp dụng bất đẳng thức AM-GM: \(\left(a^2+1\right)+\left(b^2+1\right)+\left(c^2+1\right)\ge2a+2b+2c\)(1)
và \(a^2+b^2+c^2\ge ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)(2)
cộng theo vế (1) và (2): \(3\left(a^2+b^2+c^2\right)+3\ge2\left(a+b+c+ab+bc+ca\right)=12\)
\(\Leftrightarrow a^2+b^2+c^2\ge3\)(**)
từ (*) và (**) ta có \(P\ge3\)
đẳng thức xảy ra khi a=b=c=1
xét các số thực a,b,c (a≠0) sao cho phương trình ax2+bx+c=0 có 2 nghiệm m, n thỏa mãn \(0\le m\le1;0\le m\le1\). tìm GTNN của \(Q=\dfrac{2a^2-ac-2ab+bc}{a^2-ab+ac}\)
\(Q=\dfrac{2-\dfrac{c}{a}-\dfrac{2b}{a}+\left(\dfrac{b}{a}\right)\left(\dfrac{c}{a}\right)}{1-\dfrac{b}{a}+\dfrac{c}{a}}=\dfrac{2-mn+2\left(m+n\right)-mn\left(m+n\right)}{1+m+n+mn}\)
\(Q=\dfrac{\left(2-mn\right)\left(m+n+1\right)}{\left(m+1\right)\left(n+1\right)}\ge\dfrac{\left[8-\left(m+n\right)^2\right]\left(m+n+1\right)}{\left(m+n+2\right)^2}\)
Đặt \(m+n=t\Rightarrow0\le t\le2\)
\(Q\ge\dfrac{\left(8-t^2\right)\left(t+1\right)}{\left(t+2\right)^2}-\dfrac{3}{4}+\dfrac{3}{4}=\dfrac{\left(2-t\right)\left(4t^2+15t+10\right)}{4\left(t+2\right)^2}+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=" xảy ra khi \(t=2\) hay \(m=n=1\)
Xét các số thực a,b,c thay đổi thỏa mãn \(0\le a\le1\le b\le2\le c\) và \(a+b+c=5\) . Tìm giá trị lớn nhất của biểu thức \(A=a^2+b^2+c^2\) .
Do \(\left\{{}\begin{matrix}a\ge0\\b\ge1\\a+b+c=5\end{matrix}\right.\) \(\Rightarrow c\le4\)
\(\Rightarrow2\le c\le4\Rightarrow\left(c-2\right)\left(c-4\right)\le0\Rightarrow c^2\le6c-8\)
\(0\le a\le1< 6\Rightarrow a\left(a-6\right)\le0\Rightarrow a^2\le6a\)
\(1\le b\le2< 5\Rightarrow\left(b-1\right)\left(b-5\right)\le0\Rightarrow b^2\le6b-5\)
Cộng vế:
\(a^2+b^2+c^2\le6\left(a+b+c\right)-13=17\)
\(A_{max}=17\) khi \(\left(a;b;c\right)=\left(0;1;4\right)\)
Cho các số a,b,c thỏa \(0\le a;b;c\le1\)
Chứng minh rằng:
a) \(a+b+c-ab-ac-bc\le1\)
b) \(a+b^2+c^3-ab-bc-ac\le1\)
Cho a,b,c>0 và a+b+c=1.
Tìm giá trị nhỏ nhất của: A= \(\dfrac{1}{1-2\left(ab+ac+bc\right)}\)+\(\dfrac{1}{abc}\)
Bài ni hay lắm mn
Cho 3 số a , b , c thỏa mãn \(0\le a\le b\le c\le1\)
Tìm giá trị lớn nhất của biểu thức \(B=\left(a+b+c+3\right)\left(\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}\right)\)
Đặt \(\left(a+1;b+1;c+1\right)=\left(x;y;z\right)\Rightarrow1\le x\le y\le z\le2\)
\(B=\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{y}{x}+\dfrac{z}{y}+\dfrac{z}{x}+\dfrac{x}{z}+3\) (1)
Do \(x\le y\le z\Rightarrow\left(z-y\right)\left(y-x\right)\ge0\)
\(\Leftrightarrow xy+yz\ge y^2+zx\)
\(\Leftrightarrow\dfrac{x}{z}+1\ge\dfrac{y}{z}+\dfrac{x}{y}\)
Tương tự: \(1+\dfrac{z}{x}\ge\dfrac{y}{x}+\dfrac{z}{y}\)
Cộng vế: \(2+\dfrac{x}{z}+\dfrac{z}{x}\ge\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{y}{x}\) (2)
Từ (1); (2) \(\Rightarrow B\le2\left(\dfrac{x}{z}+\dfrac{z}{x}\right)+5\)
Đặt \(\dfrac{z}{x}=t\Rightarrow1\le t\le2\)
\(\Rightarrow B\le2\left(t+\dfrac{1}{t}\right)+5=\dfrac{2t^2+2}{t}+5=\dfrac{2t^2+2}{t}-5+10\)
\(\Rightarrow B\le\dfrac{2t^2-5t+2}{t}+10=\dfrac{\left(t-2\right)\left(2t-1\right)}{t}+10\le10\)
\(B_{max}=10\) khi \(t=2\) hay \(\left(a;b;c\right)=\left(0;0;1\right);\left(0;1;1\right)\)
1. Cho \(a+b+c\le\frac{3}{2}\) . Tìm giá trị nhỏ nhất của \(S=a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
2. Cho \(a+b\le1\) . Tìm giá trị nhỏ nhất của \(S=a+b+\frac{1}{a}+\frac{1}{b}\)
a) ta có \(S=a+\frac{1}{4a}+b+\frac{1}{4b}+c+\frac{1}{4c}+\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Áp dụng bất đẳng thức cô si ta có \(a+\frac{1}{4a}\ge2\sqrt{\frac{a.1}{4a}}=2.\frac{1}{2}=1\)
tương tự ta có \(b+\frac{1}{4b}\ge1;c+\frac{1}{4c}\ge1\)
=> \(a+\frac{1}{4a}+b+\frac{1}{4b}+c+\frac{1}{4c}\ge3\)
mặt khác Áp dụng bất đẳng thức svác sơ ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\ge\frac{9}{\frac{3}{2}}=6\) (vì a+b+c<=3/2)
cộng từng vế ta có \(S\ge9\)
dấu = xảy ra <=> a=b=c=1/2
câu 2 tương tự
chết quên khi mà cậu dùng svác sơ xong thì cậu phải nhân thêm 3/4 nữa rồi mới cộng vào để tính Smin