x-1 2 + x-1 3+x-1 6=2
tìm x
6/x +1/2 =2
tìm x
`6/x+1/2=2`
`6/x=2-1/2`
`6/x=3/2`
`x=6:3/2`
`x=4`
Vậy `x=4`
1. Tìm các số tự nhiên x và y sao cho:
a) x/3 - 4/y = 1/5
b) 4/x + y/3 = 5/6 .
2Tìm các số nguyên x và y sao cho:
a) 5/x - y/3 = 1/6
b) x/6 - 2/y = 1/30
2:
a: 5/x-y/3=1/6
=>\(\dfrac{15-xy}{3x}=\dfrac{1}{6}\)
=>\(\dfrac{30-2xy}{6x}=\dfrac{x}{6x}\)
=>30-2xy=x
=>x(2y+1)=30
=>(x;2y+1) thuộc {(30;1); (-30;-1); (10;3); (-10;-3); (6;5); (-6;-5)}
=>(x,y) thuộc {(30;0); (-30;-1); (10;1); (-10;-2); (6;2); (-6;-3)}
b: x/6-2/y=1/30
=>\(\dfrac{xy-12}{6y}=\dfrac{1}{30}\)
=>\(\dfrac{5xy-60}{30y}=\dfrac{y}{30y}\)
=>5xy-60=y
=>y(5x-1)=60
=>(5x-1;y) thuộc {(-1;-60); (4;15); (-6;-10)}(Vì x,y là số nguyên)
=>(x,y) thuộc {(0;-60); (1;15); (-1;-10)}
a) 5(k+3x)(x+1)-4(1+2x)=80 x\(_0\)=2Tìm gt của kb) x+1=xc) x+2=0d) x+5=0e) (x+1)(2x-3)-3(x-2)=2(x-1)\(^2\)f) (x+1)(x\(^2\)-x+1)-2x=x(x-1)(x+1)g)\(\dfrac{x}{3}\)-\(\dfrac{5x}{6}\)-\(\dfrac{15x}{12}\)=\(\dfrac{x}{4}\)-5h) \(\dfrac{x-1}{2}\)-\(\dfrac{x+1}{15}\)-\(\dfrac{2x-13}{6}\)=0i) \(\dfrac{3\left(5x-2\right)}{4}\)-2=\(\dfrac{7x}{3}\)-5(x-7)
j) \(\dfrac{x-3}{11}\)+\(\dfrac{x+1}{3}\)=\(\dfrac{x+7}{9}\)-1k)\(\dfrac{3x-0,4}{2}\)+\(\dfrac{1,5-2x}{3}\)=\(\dfrac{x+0,5}{5}\)l) \(\dfrac{x-4}{5}\)+\(\dfrac{3x-2}{10}\)-x=\(\dfrac{2x-5}{3}\)-\(\dfrac{7x+2}{6}\)m) \(\dfrac{\left(2x-3\right)\left(2x+3\right)}{8}\)=\(\dfrac{\left(x-4\right)^{^2}}{6}\)+\(\dfrac{\left(x-2^{ }\right)^2}{3}\)n) \(\dfrac{7x^2-14x-5}{15}\)=\(\dfrac{\left(2x+1\right)^2}{5}\)-\(\dfrac{\left(x-1\right)^2}{3}\)o) \(\dfrac{\left(7x+1\right)\left(x-2\right)}{10}\)+\(\dfrac{2}{5}\)=\(\dfrac{\left(x-2^{ }\right)^2}{5}\)+\(\dfrac{\left(x-1\right)\left(x-2\right)}{10}\)
Chia câu hỏi ra cho thành nhiều phần cho dễ trả lời á bạn
cho các đa thức P (x) =-5x^3+3x^2+2x+5
Q(x)= -5x^3+6x^2+2x+5
tính giá trị đa thức P(x)+Q(x) tại x =1/2
tìm x để Q(x)-P(x)= 6
\(P\left(\dfrac{1}{2}\right)+Q\left(\dfrac{1}{2}\right)=-5.\left(\dfrac{1}{2}\right)^3+3\left(\dfrac{1}{2}\right)^2+\dfrac{2}{2}+5-5\left(\dfrac{1}{2}\right)^3+6\left(\dfrac{1}{2}\right)^2+\dfrac{2}{2}+5\)
\(P\left(\dfrac{1}{2}\right)+Q\left(\dfrac{1}{2}\right)=-\dfrac{5.1}{8}+\dfrac{3.1}{4}+6-\dfrac{5.1}{8}+\dfrac{6.1}{4}+6\)
\(P\left(\dfrac{1}{2}\right)+Q\left(\dfrac{1}{2}\right)=-\dfrac{5}{8}+\dfrac{3}{4}+6-\dfrac{5}{8}+\dfrac{3}{2}+6\)
\(P\left(\dfrac{1}{2}\right)+Q\left(\dfrac{1}{2}\right)=13\)
\(Q\left(x\right)-P\left(x\right)=6\)
\(-5x^3+6x^2+2x+5+5x^3-3x^2-2x-5=6\)
\(3x^2=6\)
\(x^2=2\)
\(=>x=\pm\sqrt{2}\)
x(x-1)+(x+1)(3-x)=2
tìm x
\(\Leftrightarrow x^2-x-x^2+2x+3=2\)
=>x=-1
Cho biểu thức: A = x+3√x/x-25 + 1/√x+5; B = √x-5/√x+2 (điều kiện: x ≥ 0, x ≠ 25). P = √x-1/√x+2
Tìm x để P > 1/3
P>1/3
=>P-1/3>0
=>\(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}-\dfrac{1}{3}>0\)
=>\(\dfrac{3\sqrt{x}-3-\sqrt{x}-2}{3\left(\sqrt{x}+2\right)}>0\)
=>2 căn x-5>0
=>x>25/4
a x 1/5 + a x 2/3 = 2 2/13 : 2
Tìm a nhé
\(\Leftrightarrow a\cdot\dfrac{13}{15}=\dfrac{28}{13}:2=\dfrac{14}{13}\)
=>\(a=\dfrac{14}{13}:\dfrac{13}{15}=\dfrac{210}{169}\)
h(x)=4x^2-2x^3-2x+2x^3-(-x)+x+(-5x)+1+4x^2
tìm nghiệm đa thức
a) 2x(x^3 – 3) – 2x^4 = 18.
b) 9x(4 – x) + (3x + 1)^2 = 2
Tìm x, biết:trình bày ra luôn
\(a,2x\left(x^3-3\right)-2x^4=18\\ 2x^4-6x-2x^4=18\\ -6x=18\\ x=-3\)
\(b,9x\left(4-x\right)+\left(3x+1\right)^2=2\\ 36x-9x^2+9x^2+6x+1=2\\ 42x=2-1\\ 42x=1\\ x=\dfrac{1}{42}\)
\(a,\Leftrightarrow2x^4-3x-2x^4=18\Leftrightarrow-3x=18\Leftrightarrow x=-6\\ b,\Leftrightarrow36x-9x^2+9x^2+6x+1=2\\ \Leftrightarrow42x=1\Leftrightarrow x=\dfrac{1}{42}\)
Cho biểu thức P =\(\dfrac{x}{x+2}\) +\(\dfrac{2}{x-2}\)+\(\dfrac{2x+4}{4-x^2}\)với x≠2 , x≠ -2
Tìm giá trị của P tại |x+1|=3
\(\dfrac{x}{x+2}+\dfrac{2}{x-2}+\dfrac{2x+4}{4-x^2}\\ =\dfrac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2x+4}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2-2x+2x+4-2x-4}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2-2x}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{x}{x+2}\)
\(\left|x+1\right|=3\\ \left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.=>\left[{}\begin{matrix}x=2\left(loai\right)\\x=-4\left(tm\right)\end{matrix}\right.\)
với x=-4 thì
\(\dfrac{-4}{-4+2}=\dfrac{-4}{-2}=2\)
\(=>P=\dfrac{x}{x+2}+\dfrac{2}{x-2}+\dfrac{-2x-4}{x^2-4}\)`(x ne +-2)`
\(P=\dfrac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{-2x-4}{\left(x+2\right)\left(x-2\right)}\)
\(P=\dfrac{x^2-2x+2x+4-2x-4}{\left(x+2\right)\left(x-2\right)}=\dfrac{x^2-2x}{\left(x-2\right)\left(x+2\right)}=\dfrac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\)
\(P=\dfrac{x}{x+2}\)
`|x+1| =3`
`=>[(x+1=3),(x+1=-3):}`
`=> [(x=3-1=2(ktm) ),(x=-3-1=-4(t/m)):}`
Thay `x=-4` vào `P` ta đc
`P= (-4)/(-4+2) = 2`