Xác định a và b của đường thẳng (d): y = ax+b (a ≠ 0). Biết (d) đi qua M(2;-3) và cắt hai trục toạ độ tại hai điểm A và B sao cho M là trung điểm của AB
Xác định phương trình của đường thẳng (d):y=ax+b biết đường thẳng (d) đi qua điểm A(-1;2) và điểm B(3; -2).
Bài 1 :Giả sử đường thẳng (d) có phương trình y=ax+b . Xác định a,b để (d) đi qua hai điểm A(1;3) và B(-3;-1)
Bài 2 Cho hàm số y=x+m (d). Tìm các giá trị của m để đường thẳng (d)
1, Đi qua điểm A(1;2003)
2, Song song với đường thẳng x-y+3=0
xác định hằng số a;b của đường thẳng y=ax+y biết d đi qua hai điểm A(-1;2),B(2;-3).
Vì (d) đi qua hai điểm A(-1;2) và B(2;-3) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}-a+b=2\\2a+b=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=5\\a-b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{5}{3}\\b=a+2=\dfrac{-5}{3}+2=\dfrac{1}{3}\end{matrix}\right.\)
cho 3 đường thẳng
(d\(_1\)) y = ax+b ; (d\(_2\)) y = -x+1 ; (d\(_3\)) y = x+2
a. xác định a và b biết (d\(_1\)) // (d\(_2\)) và (d\(_1\)) cắt (d\(_3\)) tại 1 điểm trên trục tung
b. xác định a và b biết (d\(_1\)) đi qua điểm A ( 2;3 ) và (d\(_1\)) // (d\(_3\))
c. xác định a và b biết (d\(_1\)) \(\perp\) (d\(_2\)) và (d\(_1\)) đi qua B (1;2 )
b: Vì (d1)//(d3) nên a=1
hay (d1): y=x+b
Thay x=2 và y=3 vào (d1), ta được:
b+2=3
hay b=1
xác định hệ số a,b của hàm số y=ax+b, biết đồ thị (d) của hàm số đi qua điểm A (2;-2) và song song với đường thẳng y=1/2x + 1
Lời giải:
$(d)$ song song với $y=\frac{1}{2}x+1$ nên $a=\frac{1}{2}$
$A\in (d)$ nên:
$y_A=ax_A+b$
$\Leftrightarrow -2=a.2+b$
$\Leftrightarrow -2=\frac{1}{2}.2+b$
$\Leftrightarrow b=-3$
Vậy $a=\frac{1}{2}; b=-3$
2/Xác định hằng số a , b của đường thẳng y = ax + b Biết
a/ D song song với đường thẳng D1 y = 3 x + 1 và đi qua điểm A (2 ,5)
b/D song song với đường thẳng d2 y = x - 5 và cắt trục hoành tại điểm có hoành độ bằng -2
c/D đi qua điểm A = (-1 ;2), hay b (2; - 3)
(d):Y = ax + b
(d’): y=a’x+b’
\(a,\Leftrightarrow\left\{{}\begin{matrix}a=3;b\ne1\\2a+b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-1\end{matrix}\right.\\ b,\Leftrightarrow\left\{{}\begin{matrix}a=1;b\ne-5\\B\left(-2;0\right)\inđths\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1;b\ne-5\\-2a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\\ c,\Leftrightarrow\left\{{}\begin{matrix}-a+b=2\\2a+b=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{5}{3}\\b=\dfrac{1}{3}\end{matrix}\right.\)
1,Xác định đường thẳng (d) biết nó đi qua M (-2;5) và song song với đường thẳng y= -3x-2
2,Xác định đường thẳng (d) biết nó đi qua 2 điểm A(-2;3) và B(1;-2)
cho hàm số y= \(\dfrac{1}{2}x^2\)(P) và y= ax + b (d). Xác định đường thẳng (d) biết (d) đi qua điểm A(-2;2) và (d) tiếp xúc với parabol (P)
(d) đi qua A(-2;2) <=> 2 = -2a + b (1)
Hoành độ giao điểm tm pt
\(\dfrac{1}{2}x^2=ax+b\Leftrightarrow x^2-2ax-2b=0\)
\(\Delta'=a^2-\left(-2b\right)=a^2+2b\)
Để (P) tiếp xúc (d) \(a^2+2b=0\)(2)
Từ (1) ; (2) ta có hệ \(\left\{{}\begin{matrix}-2a+b=2\\a^2+2b=0\end{matrix}\right.\)bạn tự giải nhé