Cho ba tam giác ABC có 3 trung tuyến AD, BE, CF đồng quy tại G
a) Nếu tam giác ABC đều khi đó hãy chứng minh GD = GE = GF
b) Đảo lại nếu có GD = GE =GF. khi đó chứng minh tam giác ABC đều
Cho Tam Giac ABC có 3 đường trung tuyến AD ; BE ; CF đồng quy tại G đảo lại nếu có GD = GE =GF
Nếu Tam Giac ABC đều hãy CM GD=GE=GF
CM Tam Giac ABC đều
cho tam giác ABC có các trung tuyến AD,BE và CF cắt nhau tại G.Cm AGB |GD-GE|<GF<GD+GF
Cho tam giác ABC vuông tại A, trung tuyến AD, trọng tâm G
a,Cho biết \(\frac{AB}{AC}=\frac{3}{4}\)và AD=5 tính diện tích tam giác ABC
b, Qua G kẻ đường thẳng cắt AB, AC lần lượt tại M,N. Chứng minh rằng \(\frac{AB}{AM}+\frac{AC}{AN}=3\)
c,Kẻ các đường trung tuyến BE, CF của tam giác ABC Chứng minh rằng \(\sqrt{\frac{GA}{GD}}+\sqrt{\frac{GB}{GE}}+\sqrt{\frac{GC}{GF}}=\frac{3\sqrt{2}}{2}\)
cho Tam giác có hai đg trung tuyến AD và BE cắt nhau ở G . Kéo dài GD thêm 1 đoạn DI = DG . Kéo dài GE thêm 1 đoạn EK = EG
1) chứng minh AK ( = CG ) = BI
2) chứng minh AK // BG
3) Chứng minh tam giác GAK = Tam giác GIB và AG = 2GD , BG = 2GE
4) Chứng minh DG = DA : 3 , EG = EB : 3
5) Nếu đường trung tuyến CF của Tam giác ABC cắt AD tại G thì ta có kết quả gì tương tự câu 4 ? Rút ra nhận xét về 3 đường trung tuyến .
1)
xét ΔAEK và Δ CEG có:
EA=EC(gt)
EG=EK(gt)
góc AEK= góc GEC( 2 góc đối đỉnh)
=> ΔAEK=ΔCEG(c.g.c)
=> AK=GC
cm tương tự ta có:ΔGDC=ΔIDB(c.g.c)
=> GC=BI
và AK=GC
=> AK=GC=BI
2)
theo câu a, ta có ΔAEK=ΔCEG(c.g.c)
=> góc EAK= góc ECG
=> AK//GC
theo câu a, ta có: ΔGDC=ΔIDB(c.g.c)
=> góc DGC= góc DIB
=> GC//BI
và AK//GC
=> AK//BI
3)
ta có: AD là đường trung tuyến ứng với cạnh BC của Δ ABC
BE là đường trung tuyến ứng với cạnh AC của ΔABC
=> giao của AD và BE là trọng tâm của ΔABC
=> G là trọng tâm của ΔABC
=> GA=2GD
mà GI=ID
=> GA=GI+ID=GI
ta có G là trọng tâm của ΔABC; BE là đường trung tuyến của ΔABC
=> BG=2GE
mà GE=EK
=> BG=GE+EK=GK
xét ΔGAK và ΔGIB có :
GA=GI(cmt)
GK=GB(cmt)
góc AGK= góc BGI(2 góc đối đỉnh)
=>ΔGAK=ΔGIB(c.g.c)
4)
ta có AD là đường trung tuyến của ΔABC
=> AD=3GD
hay DG=DA:3
ta có : BE là đường trung tuyến của ΔABC
=> GE=BE:3
5)
nếu CF là đường trung tuyến của ΔABC cắt AD tại G thì G là trọng tâm của tam giác ΔABC( tương tự như câu 4)
=> CG=2GF
NX: 3 đường trung tuyến của 1 tam giác cắt nhau tại 1 điểm. điểm này gọi là trọng tâm của tam giác đó
điểm này cách trung điểm của cạnh mà đoạn thẳng đi qua nó một khoảng =1/2 k/cách từ điểm đó đến đỉnh của tam giác mà đoạn thẳng đã đi nó
cho Tam giác có hai đg trung tuyến AD và BE cắt nhau ở G . Kéo dài GD thêm 1 đoạn DI = DG . Kéo dài GE thêm 1 đoạn EK = EG
1) chứng minh AK ( = CG ) = BI
2) chứng minh AK // BG
3) Chứng minh tam giác GAK = Tam giác GIB và AG = 2GD , BG = 2GE
4) Chứng minh DG = DA : 3 , EG = EB : 3
5) Nếu đg trung tuyến CF của Tam giác ABC cắt AD tại G thì ta có kết quả gì tương tự câu 4 ? Rút ra nhận xét về 3 đg trung tuyến .
1: Xét ΔABC có
AD là đường trung tuyến
BE là đường trung tuyến
AD cắt BE tại G
Do đó: G là trọng tâm của ΔABC
Suy ra: GA=2GD; GB=2GE
mà GI=2GD
nên GA=GI
Ta có: GB=2GE
mà GK=2GE
nên GB=GK
Xét tứ giác ABIK có
G là trung điểm của AI
G là trung điểm của BK
Do đó: ABIK là hình bình hành
Suy ra: AK=BI
2: Sửa đề; AK//CG
Xét tứ giác AGCK có
E là trung điểm của AC
E là trung điểm của GK
Do đó: AGCK là hình bình hành
Suy ra: AK//CG
3: Xét ΔGAK và ΔGIB có
GA=GI
GK=GB
AK=IB
Do đó: ΔGAK=ΔGIB
4: Ta có: G là trọng tâm của ΔABC
mà AD là đường trung tuyến
nên DG=DA/3
Ta có: G là trọng tâm của ΔABC
mà BE là đường trung tuyến
nên EG=BE/3
Bài tập 8: Trên đường trung tuyến AD của tam giác ABC, lấy hai điểm I và G sao cho AI = IG = GD. Gọi E là trung điểm của AC. 1. Chứng minh B, G, E thẳng hàng và so sánh BE và GE. 2. CI cắt GE tại O. điểm O là gì của tam giác ABC. chứng minh BE = 9OE.
Bài tập 8: Trên đường trung tuyến AD của tam giác ABC, lấy hai điểm I và G sao cho
AI = IG = GD. Gọi E là trung điểm của AC.
1. Chứng minh B, G, E thẳng hàng và so sánh BE và GE.
2. CI cắt GE tại O. điểm O là gì của tam giác ABC. chứng minh BE = 9OE.
Cho tam giác abc với đường cao ad, trung tuyến be và đường phân giác cf đồng quy tại H.Biết bh=dh chứng minh tam giác abc đều
Cho tam giác ABC cân tại A có hai đường trung tuyến BD và EC cắt nhau tại G.
a) Chứng minh BD=CE
b) chứng minh tam giác ABD là tam giác cân
c) Chứng minh GD+GE>1/2 BC
giúp mình với ạ, cảm ơn rất nhiều=0
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{BAD}\) chung
AD=AE
Do đó: ΔABD=ΔACE
b: Ta có: ΔABD=ΔACE
nên AD=AE
hay ΔADE cân tại A
refer
a: Xét ΔABD và ΔACE có
AB=AC
ˆBADBAD^ chung
AD=AE
Do đó: ΔABD=ΔACE
b: Ta có: ΔABD=ΔACE
nên AD=AE
hay ΔADE cân tại A