Cho đường thẳng (d): 2x+y-2=0 và điểm A(6;5). Điểm A' đối xứng với A qua d có tọa độ???
A: (-6;-5)
B: (-5,-6)
C. (-6;-1)
D. (5;6)
Cho đường thẳng (d): 2x + y – 2 = 0 và điểm A(6; 5). Điểm A’ đối xứng với A qua (D) có toạ độ là: A. (-6; -5) B. (-5; -6) C. (-6; -1) D. (5; 6)
: Cho đường thẳng: (d): y = (2m – 1)x + m – 2.
1) Tìm m để đường thẳng (d):
a. Đi qua điểm A(1; 6).
b. Song song với đường thẳng 2x + 3y – 5 = 0.
c. Vuông góc với đường thẳng x + 2y + 1 = 0.
2) Tìm điểm cố định mà (d) luôn đi qua với mọi m.
mn giảng giúp mình với, tại mình không hiểu ý ạ:( camon mn nhiều ạ
1.
\(a,\Leftrightarrow2m-1+m-2=6\Leftrightarrow3m=9\Leftrightarrow m=3\\ b,2x+3y-5=0\Leftrightarrow3y=-2x+5\Leftrightarrow y=-\dfrac{2}{3}x+\dfrac{5}{3}\)
Để \(\left(d\right)\text{//}y=-\dfrac{2}{3}x+\dfrac{5}{3}\Leftrightarrow\left\{{}\begin{matrix}2m-1=-\dfrac{2}{3}\\m-2\ne\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{6}\\m\ne\dfrac{11}{3}\end{matrix}\right.\Leftrightarrow m=\dfrac{1}{6}\)
\(c,x+2y+1=0\Leftrightarrow2y=-x-1\Leftrightarrow y=-\dfrac{1}{2}x-\dfrac{1}{2}\\ \left(d\right)\bot y=-\dfrac{1}{2}x-\dfrac{1}{2}\Leftrightarrow\left(-\dfrac{1}{2}\right)\left(2m-1\right)=-1\\ \Leftrightarrow\dfrac{1}{2}\left(2m-1\right)=1\Leftrightarrow m-\dfrac{1}{2}=1\Leftrightarrow m=\dfrac{3}{2}\)
2.
Gọi điểm cố định đó là \(A\left(x_0;y_0\right)\)
\(\Leftrightarrow y_0=\left(2m-1\right)x_0+m-2\\ \Leftrightarrow2mx_0+m-x_0-2-y_0=0\\ \Leftrightarrow m\left(2x_0+1\right)-\left(x_0+y_0+2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x_0=-1\\x_0+y_0+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-\dfrac{1}{2}\\y_0=-\dfrac{3}{2}\end{matrix}\right.\)
Cho 2 đường thẳng d1= 2x-y-2=0, d2= x+y+3=0 và M(3;0). Viết phương trình đường thẳng d đi qua M, cắt d1,d2 lând lượt tại 2 điểm A và B sao cho M là trung điểm
Lời giải:
Vì $A\in (d_1)$ nên gọi tọa độ của $A$ là $(a, 2a-2)$
Vì $B\in (d_2)$ nên gọi tọa độ của $B$ là $(b, -b-3)$
$M$ là trung điểm của $AB$ nên:
\(3=x_M=\frac{x_A+x_B}{2}=\frac{a+b}{2}\Rightarrow a+b=6(1)\)
\(0=y_M=\frac{y_A+y_B}{2}=\frac{2a-2-b-3}{2}\Rightarrow 2a-b=5(2)\)
Từ $(1); (2)\Rightarrow a=\frac{11}{3}; b=\frac{7}{3}$
Khi đó: $A=(\frac{11}{3}, \frac{16}{3})$
Vì $A, M\in (d)$ nên VTCP của (d) là $\overrightarrow{MA}=(\frac{2}{3}, \frac{16}{3})$
$\Rightarrow \overrightarrow{n_d}=(\frac{-16}{3}, \frac{2}{3})$
PTĐT $(d)$ là:
$\frac{-16}{3}(x-3)+\frac{2}{3}(y-0)=0$
$\Leftrightarrow -8x+y+24=0$
Câu 29: Điểm thuộc đường thẳng y = 4x - 2 là:
A. (0; 2) B . (3; 1) C. (2; 6) D. (1; 6).
Câu 30: Đồ thị của hàm số y = 2x + 3 là đường thẳng đi qua hai điểm phân biệt sau
A. (0; 3) và (3; 0) C. (0; 3) và (1,5; 2)
C. (0; 3) và (1; 5) D. (3; 0) và (1,5; 0)
Câu 31: Đồ thị của hàm số y = ax + b (a ≠ 0) là
một đường cong Parabol.
một đường thẳng đi qua hai điểm (0; b) và ((-b)/a;0)
một đường thẳng đi qua gốc toạ độ.
một đường thẳng đi qua hai điểm (b; 0) và (0; b)
Câu 32: Khẳng định nào về hàm số y = x + 3 là sai
A. Cắt Oy tại (0; 3) B. Nghịch biến trên
C. Cắt Ox tại (-3; 0) D. Đồng biến trên
Câu 33: Góc tạo bởi đường thẳng: y =\(\sqrt{3x+1}\) với trục Ox bằng
A. 300 B . 300 C. 450 D. 600.
Cho hai đường thẳng (d): 2x-y-2=0 và (d’): 4x-2y+6=0.Khoảng cách giữa hai đường thẳng là:
\(A,-\sqrt{5}\)
\(B,2\sqrt{5}\)
\(C\sqrt{5}\)
D.5
NX: \(\dfrac{2}{4}\)=\(\dfrac{-1}{-2}\)≠\(\dfrac{-2}{6}\)
=> (d) // (d')
Ta lấy điểm A(0;-2) ∈ d
d(d;d') = \(\dfrac{\left|4.0-2.\left(-2\right)+6\right|}{\sqrt{4^2+2^2}}\) = \(\sqrt{5}\)
=> Chọn C
Trong mặt phẳng tọa độ Oxy cho điểm M(1,-1)và hai đường thẳng có phương trình (d1):x - y - 1 = 0 và (d2) 2x+y-5=0. Gọi A là giao điểm của 2 đường thẳng trên . Biết rằng có 2 đường thẳng (d) đi qua M cắt 2 đường thẳng trên tại B,C sao cho tam giác ABC có BC=3AB .Tìm phương trình đường thẳng của 2 đường thẳng đó
Cho đường tròn C x^2 + y² + 2x + 5y - 15 = 0 Viết phương trình đường thẳng vuông góc với đường thẳng delta: 4x + 3y - 2 = 0 cắt đường tròn C tại hai điểm a và b sao cho ab=6
Cho đường thẳng d : 2x + y -4 = 0 và A(4;1), B(1;-6). Tìm điểm M thuộc d thỏa mãn MA + MB nhỏ nhất
cho d 2x-y-1=0,d':2x+y-3=0 gọi i= d giao với d' A là điểm thuộc đường thẳng d ,A có hoành độ dương khác 1, lập phương trình đường thảng d1 đi qua A, cắt d' tại B sao cho diện tích tam giác IAB=6 và IB=3IA
Câu 26: Đường thẳng y = -x + 5 cắt trục hoành tại điểm nào?
A. (-5; 0) B. (1; 0) C. (5; 0) D. (1; 4)
Câu 27: Đường thẳng y = 2x – 1 cắt trục tung tại điểm nào?
A. (0; -1) B. (0; 1) C. (1/2;0) D. (-1; 0)
Câu 28: Đường thẳng y = 3x + 2 và đường thẳng y = -x + 6 cắt nhau tại điểm:
A. (1; 5) B . (2; 7) C. (2; 4) D. (4; 14).
Câu 29: Điểm thuộc đường thẳng y = 4x - 2 là:
A. (0; 2) B . (3; 1) C. (2; 6) D. (1; 6).
Câu 30: Đồ thị của hàm số y = 2x + 3 là đường thẳng đi qua hai điểm phân biệt sau
A. (0; 3) và (3; 0) C. (0; 3) và (1,5; 2)
C. (0; 3) và (1; 5) D. (3; 0) và (1,5; 0)
Câu 31: Đồ thị của hàm số y = ax + b (a ≠ 0) là
một đường cong Parabol.
một đường thẳng đi qua hai điểm (0; b) và ((-b)/a;0)
một đường thẳng đi qua gốc toạ độ.
một đường thẳng đi qua hai điểm (b; 0) và (0; b)
Câu 32: Khẳng định nào về hàm số y = x + 3 là sai
A. Cắt Oy tại (0; 3) B. Nghịch biến trên
C. Cắt Ox tại (-3; 0) D. Đồng biến trên
Câu 33: Góc tạo bởi đường thẳng: y = với trục Ox bằng
A. 300 B . 300 C. 450 D. 600.